

HELCOM Stakeholder Conference 2025 A 'one Baltic' approach towards a sea unaffected by hazardous substances **31 March 2025**

The ripple effect: How recent PFAS regulations shape our view of the Baltic Sea contamination

Markus Raudkivi

HELCOM Secretariat

Co-funded by the European Union

EMPEREST

What are PFAS?

- PFAS per- and polyfluoroalkyl substances
- Large group of manmade chemicals, also called "forever chemicals" due to almost no biodegradability
- Invented in 1938, widescale use since the 1950s
- First evidence of toxicity from 1955 (buried)
- Patented in AFFFs (fire-fighting foams) in 1967
- Toxicity starts to become known wide-scale since 1998
- Worldwide restriction of PFOS production and use in 2009 (Stockholm convention)

This slide has been designed using resources from PoweredTemplate.com

Meanwhile in EU...

As part of the European Green Deal, a Zero pollution action plan was adopted by the European Commission on the 12th of May 2021

New proposals published on the 26th of October 2022, including

- A revision of Urban Wastewater Treatment Directive
- A revision of the Water Framework Directive priority substances list, including a revision on the Environmental Quality Standards (EQS) regulation
- New SUM of 24 PFAS limit value, using a relative potency factor (RPF) system
 - Threshold value for water would become less strict, from 0.13 to 4.4 ng/L (PFOA eq)
 - Threshold for biota would become much stricter, from 9.1 to 0.077 μg/kg ww (PFOA eq)

How would these new pending thresholds change our perspective?

Methodological recommendations for monitoring and assessment of PFAS in the aquatic environment Regionally harmonised approach for PFAS monitoring and assessment

- EMPEREST addresses the existing significant gaps in the monitoring and assessment of PFAS with **methodological recommendations** to provide **harmonised guidance** to the Baltic Sea region.
- These recommendations will include **detailed information** on what, when and where to measure and how to assess and use these results.
- The recommendations will be assembled in cooperation with regional experts and authorities, to assure their quality and applicability. Through the science-policy dialogue, these recommendations are expected to contribute to the development of potential target values and indicators for the regional assessment of the Baltic Sea aquatic environment.

Project output 2.1

Methodological recommendations for the monitoring and assessment of PFAS in the aquatic environment

SUSTAINABLE WATERS

EMPEREST

EMPEREST - ELIMINATING MICRO-POLLUTANTS FROM EFFLUENTS FOR REUSE STRATEGIES Markus Raudkivi et al, 2025

EMPEREST OUTPUT 2.1

Published online on the 5th of March 2025

 Final output of the monitoring group of activities

○ Spilt into three main parts

- PART A Methodological recommendations
- PART B Sample assessment of PFAS in the Baltic Sea region based on new EU proposals
- PART C Exploration of gaps in monitoring by EMPEREST piloting universities

EMPEREST Monitoring Data Collection

As a part of the EMPEREST project activities, a data call was issued to the Baltic Sea countries to collect PFAS environmental monitoring data

As a result, a database of 140 000 PFAS measurements was established

- 3 main matrixes of water, biota and sediment
 - Not only marine samples, but also data from rivers and lakes
- 66 individual PFAS are included in the database
 - Precautionary potency values estimated for all through literature review and expert consultations

Matrices: Water, Biota – Sum of all measured PFAS

	Compound	Samples	Samples	Average	"Total" TH	Share Cun		ılative
		measured	>LOQ	concentration	exceedance	from	excee	dance
				s (ng/L PFOA)	(% of TH)	total (%)		
0	PFNA	3381	965	244.32	5358487.15	44.88	44.88	
0	PFOS	5644	2999	50.06	3411748.23	28.58	73.46	
	6:2 FTS	2252	556	81.71	1032574.22	8.65	82.11	
2	PFOA	4338	2677	11.10	675554.91	5.66	87.77	
0	PFUnDA	2950	191	106.38	461767.36	3.87	91.63	
0	PFHxS	2747	1194	14.10	382492.96	3.20	94.84	
2	PFDA	3398	370	21.09	177389.02	1.49	96.32	
2	PFHpA	2788	1966	3.08	137714.10	1.15	97.48	
	N-EtFOSA	1054	150	40.00	136363.64	1.14	98.62	
2	PFHpS	2037	221	4.77	23980.02	0.20	98.82	
	Compound	Samples	Samples	Exceedance	Average	Average TH		Rank
		measured	exceeded	frequency	concentration	exceedance		
			threshold	(%)	(ng/l PFOA eq)	amount	(%)	
2	PFNA	3381	497	15	244	5553		1
	6:2 FTS	2252	346	15	82	1857		2
)	PFOS	5644	867	15	50	1138		3
	FHxSA	15	15	100	17	379		4
	N-EtFOSA	1054	150	14	40	909	1	5
0	PFUnDA	2950	122	4	106	2418		6
	FBSA	3	3	100	10	227		7
	PFDA	3398	167	5	21	479	1	В
	N-MeFOSE	1054	4	0	208	4725		9

	Compound	Samples measured	Samples >LOQ	Average concentration s (µg/kg WW)	"Total" TH exceedance (% of TH)	Share from total (%)	Cum exce	ulative edance	
)	PFOS	3788	3534	4.82	22102519.6	62.13	62.1	3	
)	PFNA	1992	1444	2.00	3753102.25	10.55	72.6	8	
	PFDA	1994	1613	1.66	3487578.50	9.80	82.4	82.48	
)	PFUnDA	1976	1589	1.48	3056724.01	8.59	91.0	91.07	
2	PFDoDA	1584	1227	0.68	1079192.83	3.03	94.1	94.10	
)	PFTrDA	1336	1166	0.47	710735.83	2.00	96.1	96.10	
)	PFDS	2165	563	0.51	375401.34	1.06	97.1	97.16	
	FOSA	2356	1510	0.18	357367.56	1.00	98.1	98.16	
)	PFOA	2393	733	0.14	131321.68	0.37	98.53		
2	PFHpS	424	126	0.79	129881.34	0.37	7 98.90		
	Compound	Samples	Samples	Exceedance	Average	Average TH		Rank	
		measured	exceeded	frequency	concentration	exceedance			
			threshold	(%)	(µg/kg WW)	amount (%)			
)	PFOS	3788	3302	87.17	4.82	6254.2	6254.25		
	FBSA	18	18	100.00	2.07	2694.14		2	
2	PFDA	1994	1543	77.38	1.66	2162.17		3	

PFNA

PFUnDA

6:2 FTS

PFDoDA

10:2 FTS

PFTrDA

4:2 FTS

1992

1976

231

1584

1336

122

14

1420

1517

42

1

933

853

16

71.29

76.77

18.18

58.90

7.14

63.85

13.11

2.00

1.48

1.04

0.68

0.47

0.87

22.60

2599.10

1923.68

1347.75

879.54

609.55

1128.62

29350.65

3 5

6

7 7

9

9

The Baltic Sea area, including Baltic states are in high risk for PFAS pollution, especially through contaminated biota – animals and fish

For biota samples, the new EU threshold based on human health shows:

- 9 out of 10 fish in the Baltic Sea region would be over the threshold
- 6 PFAS (PFOS, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA) are the main drivers, resulting in over 96% of measured pollution

Thankfully, long-time trends are not showing increasing concentrations

- Water samples often show decreases in the content of PFAS 24, but no change in the sum of PFAS if newer PFAS are included
 - The PFAS used in industry change so often, we can't catch up

HELCOM Stakeholder Conference 2025 A 'one Baltic' approach towards a sea unaffected by hazardous substances **31 March 2025**

Thank you for your attention!

Markus Raudkivi

markus.raudkivi@helcom.fi

Co-funded by the European Union

SUSTAINABLE WATERS

