HEL	COM	ACTIO	DN 📃
-----	-----	-------	------

2021

Underwater noise

helcom.fi

JE HELCOM

This publication has been produced as part of the project "Actions to evaluate and identify effective measures to reach GES in the Baltic Sea marine region (HELCOM ACTION)". Running from January 2019 to December 2020, HELCOM ACTION is a Helsinki Commission (HELCOM) coordinated project that is co-funded by the European Union. The project is designed to contribute to the update of the HELCOM Baltic Sea Action Plan by 2021 and can also be used by HELCOM Contracting Parties that are also EU Member States in updating and implementing their MSFD Programme of Measures. Information and views expressed in this publication are the authors' own and might vary from those of the Helsinki Commission or its members.

helcom.fi/helcom-at-work/projects/action/

This publication is a deliverable of the HELCOM ACTION project's work package WP6 - Sufficiency of measures: developing an approach to assess the sufficiency of existing measures to achieve GES, implementing the approach for selected topics, identifying the need for new measures, estimating cost-effectiveness of tentative new measures

© Baltic Marine Environment Protection Commission – Helsinki Commission (2021)

All rights reserved. Information included in this publication or extracts thereof, with the exception of images and graphic elements that are not HELCOM ACTION's or HELCOM's own and identified as such, may be reproduced without prior consent on the condition that the complete reference of the publication is given as stated below.

For bibliographic purposes this document should be cited as: Sufficiency of existing measures for underwater noise in the Baltic Sea. HELCOM ACTION project. HELCOM (2021)

Contibutor(s): Heini Ahtiainen, Luke Dodd, Samuli Korpinen, Liisa Saikkonen, Jakob Tougaard, Sara Estlander, Leena Laamanen, Tin-Yu Lai, Kaius Oljemark, Marta Ruiz, Jyri Tirroniemi, Jana Wolf, Lars Åkesson

Special thanks: SOM Platform, WG Pressure, EN Noise, Denmark, HELCOM Contracting Parties

General information about the HELCOM ACTION project

EU programme concerned

Marine Strategy Framework Directive - Second Cycle: Implementation of the New GES Decision and Programmes of Measures

Reference number of the call for proposals DG ENV/MSFD 2018 call

Title of the project

Actions to evaluate and identify effective measures to reach GES in the Baltic Sea marine region (HELCOM ACTION)

Grant agreement number 110661/2018/794637/SUB/ENV.C2

Name of beneficiary of grant agreement

Baltic Marine Environment Commission – Helsinki Commission (HELCOM)

Official legal form

Intergovernmental Organisation

Official registration number Not applicable

Official address Katajanokanlaituri 6B, 00160 Helsinki, Finland

Name and title of the Project Coordinator Owen Rowe, Project Manager

Name of partners in the project and abbreviations used Finnish Environment Institute (SYKE)

Technical University of Denmark (DTU) Aarhus University (AU) Tallinn University (AU) Swedish Agency for Marine and Water Management (SwAM) Swedish University of Agricultural Sciences (SLU) University of Tartu, Estonia (UT) Klaipėda University, Marine Research Institute (KU)

Sub-contractors

Baltic Nest Institute (BNI), Sweden AKTiiVS, Latvia Bionautit, Finland

Start date and end date of the reporting period 01/01/2019 - 31/12/2020

Start date and end date of the project 01/01/2019 – 31/12/2020

Sufficiency of existing measures for underwater noise in the Baltic Sea

Table of Contents

References	37
SOM report series	37
Annexes	39
Annex 1 Activity-pressure survey	39
Annex 2 Modified activity list (if modified)	39
Annex 3 Measure types list	39
Annex 4 Linking existing measures to measure types	39
Annex 5 Literature review search terms	39
Annex 6 Literature review summary	39
Annex 7 Topic structure	39
Annex 8 Effectiveness of measures survey	39
Annex 9 Pressure-state survey	39
Annex 10 Supplementary results for effectiveness of measures	40
Annex 11 Impacts of measure types	60

Summary of main results

This analysis has evaluated the pressure reductions in the input of continuous noise 63/125 Hz and 2 kHz, as well as impulsive noise with peak energy below 10 kHz by 2030, considering the effects of existing measures and changes in the extent of human activities. A proper analysis of sufficiency of measures has not been possible, as there are no agreed GES threshold values for underwater noise.

Moderate increases are projected for continuous noise 63/125 Hz and 2 kHz. This result is driven by the increase in the extent of the main activities contributing to the input of continuous noise, i.e. shipping, tourism and leisure activities.

Low reductions are projected for impulsive noise with peak energy below 10 kHz. The main activities contributing to the input of impulsive noise, i.e., military operations, research, survey and educational activities, and marine and coastal construction, are assumed to stay constant until 2030 as no development scenarios are available. This assumption may not be reasonable.

Effectiveness of measure types is evaluated to be from low to moderate for all measure types.

Main activities contributing to the input of noise:

Input of continuous noise: shipping, tourism and leisure activities, fish and shellfish harvesting

Input of impulsive noise: military operations, research, survey and educational activities, marine and coastal construction

The overall certainty of the assessment for noise could generally be characterized as low (impulsive noise) or moderate (continuous noise). The number of expert responses to the effectiveness of measures survey is comparatively moderate, and experts from six coastal countries have contributed to the assessment.

Introduction

Report background

The sufficiency of measures (SOM) analysis assesses improvements in environmental state and reduction of pressures that can be achieved with existing measures in the Baltic Sea region, and whether these are sufficient to achieve good environmental status (GES). The analysis involves estimating the state of the marine environment in 2030, based on a starting point of 2016 (i.e., the latest HELCOM status assessment), and given measures in existing policies, their implementation status, and the projected development of human activities over time. The evaluation can be carried out compared to relevant and agreed HELCOM threshold values for GES, where available.

The main aim of the SOM analysis is to support the update of the HELCOM Baltic Sea Action Plan (BSAP) by identifying potential gaps in achieving environmental objectives with existing measures for the Baltic Sea. In addition, the analysis can indicate both thematically and spatially where new measures are likely needed.

The same overall approach has been applied across all topics included in the SOM analysis to ensure comparability and coherence of the results, while considering topic-specific aspects and making necessary adjustments. The main components of the analysis include assessing the contribution of activities to pressures, the effect of existing measures on pressures, the effect of development of human activities on pressures, and the effect of changes in pressure on environmental state. The SOM approach, model and data collection are described in detail in the <u>methodology report</u>.

The methodology for the SOM analysis is designed to accommodate the broad array of topics relevant in the HELCOM region and to enable a region-level analysis. It balances between state-of-the-art knowledge, availability of data, and advice taken onboard from various HELCOM meetings and bodies.

The data used in the SOM analysis have been collected using expert elicitation and by reviewing existing literature, model outputs and other data sources. Data availability varies substantially across topics and data components, which is reflected in the presentation of the methods and results in this report.

The SOM analysis presents the first attempt to quantify the effects of existing measures and policies on the environment and achieving policy objectives for various environmental topics in HELCOM and the Baltic Sea area. It is aimed at assessing the overall sufficiency of existing measures at the Baltic Sea level. The results are based mainly on expert elicitation, and thus they should be utilized appropriately. Due to the pioneering nature of the approach and variable data quality and availability in the SOM analysis, the findings do not provide conclusive answers on the need for new measures, but indicate likely gaps, and should thus also be reviewed in relation to the results of other assessments.

This topic report describes the analyses carried out and the results for the SOM analysis on underwater noise, providing detailed topic-specific information. First, it presents background information and describes the data and methods for addressing the topic in the SOM assessment, including relevant assumptions and challenges. Second, it presents and discusses the findings for each result component. Third, it provides discussion on the impacts of alternative assumptions and data, evaluates the quality and confidence of the analysis, and provides implications and future perspectives. The annexes contain detailed information on the data components, topic structure and expert surveys for the analysis, as well as supplementary results.

Similar topic reports have been prepared for all nine topics covered in the SOM analysis. In addition, the results are summarized in the <u>main report</u> and the full methodology is described in the <u>methodology report</u>.

Topic background¹

Noise can be defined as unwanted sound, which interferes with animals' normal behaviour and perception of their surroundings (Richardson et al., 1995). For regulatory purposes, it is useful to divide noise into two categories; continuous noise and impulsive noise, though this division is arbitrary and overlapping. The two categories have a number of different general properties, however. Impulsive noise is characterized by being of short duration, a second or less, and with a fast rise time. Continuous noise occurs slowly over periods of minutes or much more (ISO 1996-1:2016). The categories are overlapping, however, and the same source may contribute in both categories. While e.g. pile driving and air guns generate impulsive noise, these pulses can stretch in time and merge through long-distance propagation and may ultimately contribute to the continuous ambient noise far from the source (Bailey et al., 2010; Kyhn et al, 2019).

Bearing this differentiation in mind, relevant impulsive noise sources include pile driving, air gun surveys, underwater explosions, sonars, acoustic deterrence devices and other impulsive sources with significant energy below 10 kHz. Relevant impacts from these sources are primarily disturbance of behaviour, leading to an effective habitat loss (temporary or permanent) and possible direct injury (blast trauma from explosions) and/or damage to the auditory system of animals (permanent threshold shift).

The primary sources emitting continuous low frequency noise, which means sources whose main impact on the environment relates to the increase of noise levels above natural ambient noise, are engine and propeller noise from ships and boats but may also be noise from towed bottom-touching fishing gear and offshore installations of various kinds, including offshore wind farms. The primary impact is believed to be through a temporary or permanent reduction in communication distances for animals, as well as other masking effects, such as reduced ability to detect prey, predators and obstacles (e.g. gill nets) acoustically.

Finally, there are pressures from sources not covered under the above categories, but with reason for concern regarding negative impact on the marine ecosystem. This includes sources such as echosounders, sonars and other surveying equipment, acoustic deterrence devices and other continuous or impulsive sources with primary energy above 10 kHz. Some of these sources are sufficiently loud to have effects at long range (such as seal scarers and

¹Paraphrased or quoted from HELCOM 2019. Noise sensitivity of animals in the Baltic Sea. Baltic Sea Environment Proceedings 167; HELCOM 2020a. Draft HELCOM regional action plan on underwater noise.7-8.12.2020, Heads of Delegation HOD 59-2020; HELCOM 2020b. HELCOM Activities Report 2020. 7-8.12.2020, Heads of Delegation HOD 59-2020

sonars), whereas others raise concern primarily because of their ubiquitous abundance (such as echosounders). Relevant effects of these sources include both behavioural disturbance and masking of communication/passive hearing.

The Baltic Sea holds some of the busiest shipping lanes in the world as well as some of the largest coastal cities in Northern Europe. There is, furthermore, a large range of offshore construction work and other human activities currently ongoing in the Baltic Sea area, as indicated by the now concluded Baltic SCOPE project.

Description of underwater noise in the SOM assessment

Three types of underwater noise are considered in the SOM analysis. Continuous noise is assessed in two frequency bands, 63/125 Hz and 2 kHz, respectively, and as impulsive noise is assessed sources with peak energy below 10 kHz (Figure 1). Currently, no HELCOM core indicator exists for either continuous or impulsive noise, though indicators are under development and qualify as pre-core indicators. However, EU MSFD criteria D11C1² and D11C2³ provide the basis for assessing both noise types, respectively. As no HELCOM GES threshold value exists for either noise type, the assessment focuses on the pressure reductions from present conditions achievable with existing measures. The slightly more general pressures *Continuous underwater noise* and *Impulsive underwater noise* could be selected in the expert surveys on pressure-state linkages for other topics when identifying the most significant pressures linked to any of the state components included in the SOM analysis. These pressures are included to capture the overall effects of underwater noise on the environment and to accommodate the varying knowledge of underwater noise of experts in other fields, e.g. marine mammals, fish etc.

Given the lack of persistence in any given sound wave (only lasts from seconds to few hours at most), the pressure inputs, the pressure and the state components of underwater noise are all considered equivalent in the SOM analysis. If the pressure input changes, the state will change almost instantaneously with it. For this reason, underwater noise was assessed only to the level of pressures. Thus, the analysis does not include the pressure-state linkages for underwater noise.

² Marine Strategy Framework Directive criteria D11C1 – Primary: The spatial distribution, temporal extent, and levels of anthropogenic impulsive sound sources do not exceed levels that adversely affect populations of marine animals. Member States shall establish threshold values for these levels through cooperation at Union level, taking into account regional or subregional specificities.

³ Marine Strategy Framework Directive criteria D11C2 – Primary: The spatial distribution, temporal extent and levels of anthropogenic continuous low-frequency sound do not exceed levels that adversely affect populations of marine animals. Member States shall establish threshold values for these levels through cooperation at Union level, taking into account regional or subregional specificities.

Figure 1. Schematic of the SOM model for the 3 bands of underwater noise. The two types of continuous noise pressure inputs are each assumed to make up half of the continuous noise pressure and the impulsive noise pressure input is assumed to be equivalent to the impulsive noise pressure.

Supplementary activities

Following earlier commitments on underwater noise, HELCOM had agreed to develop an action plan tackling the issue by 2021 at the latest. Consequently, active development of an HELCOM Action Plan on Underwater Noise took place throughout 2020, an effort led by HELCOM EN-Noise and supported by both Pressure and Maritime Working Groups. A draft of the plan was approved in 2020, which is now awaiting final adoption.

The plan contains regional and national actions aiming, in the long-term, at addressing adverse effects of underwater noise on marine species identified as sensitive to noise, whilst safeguarding the potential of the Baltic Sea for sustainable human activities. Both type of actions focus on the reduction of pressures and impacts from underwater noise sources of various types.

With regard to monitoring, the two underwater noise monitoring programmes on continuous and impulsive noise respectively, were updated in 2020 as part of the update process of the HELCOM Monitoring Manual, enabling the compilation of the most updated information on underwater noise monitoring efforts in the region.

Moreover, a HELCOM continuous noise database and soundscape tool has been established. Hosted by ICES, the data structure of the database has been designed on the data structures used by BIAS and the Joint Monitoring Programme for Ambient Noise North Sea (JOMOPANS). Monitoring data supplied to the database will be available for downloading. In addition, statistical soundscape maps from the BIAS project (2014) are available. The database design is flexible and allows for adaptation of the standard format to include additional metadata and map types deriving from other sources, such as the JOMOPANS project and foreseen additions in connection to the upcoming HOLAS III. The availability of this database together with the impulsive noise event registry, available since 2015 and continuously updated by contracting parties, closes the gaps on compilation of underwater noise data in the Baltic region and will provide the tools needed for assessments of underwater noise in HOLAS III.

Methods and data

The section below includes an overview of any topic-specific methodologies. A full description of the general approach, methods and data collection for the SOM analysis is available in <u>this document</u>. Note that the detailed results are presented for the most likely development of human activities and using the expert data on effectiveness of measures.

Activity-pressure input contributions

The contributions of activities to the input of underwater noise for each of the three noise types were determined using surveys that were distributed to national topic experts via the HELCOM Expert Network on Underwater Noise (EN-Noise). Responses from individual experts were accepted, but because national responses were preferred, all responses were weighted nationally to standardize the data set. Respondents were asked to assess the maximum, minimum, and most likely contribution of any activity contributing more than 5% to the input of each noise category. Responses to activities contributing below that threshold were invited but not required. Respondents were also asked to assess the extent to which data informed their answer using a five-point scale (1 being very low and 5 very high).

Effectiveness of measures and pressure-state linkages

Measure types (Annex 3) and structural relationships between the measure types and activities and pressure inputs (Annex 7) were designed by the SOM Noise Topic Team in collaboration with HELCOM ACTION WP6. The measure types were informed by the existing measures list (Annex 4) but were also designed to acknowledge the full breadth of potential measures.

For underwater noise, the effectiveness of measures survey structure comprised 19 unique measure types covering 8 activities. The same measure type may be listed under multiple activities and pressure inputs. Altogether this resulted in 67 assessments of measure type effectiveness across the three pressure inputs, input of continuous noise 63/125 kHz, input of continuous noise 2 kHz, and input of impulsive noise with peak energy below 10 kHz. The exact list of measure types, and their grouping by activities and pressure inputs is shown in Annex 7. The effectiveness of measures survey itself is included as Annex 8.

Effectiveness of the measure types and links between the pressures and state components were determined using online expert surveys implemented in December 2019 – February 2020 with follow-up surveys conducted in the spring 2020. The expert pool consisted of the EN-Noise and nationally nominated experts. Additionally, the project received survey responses from experts not on the original invitation list; these responses were also included in the analysis. The full description of the methodology and data collection is available as part of the <u>SOM methodology report</u>.

Pressure input reductions

The calculations on pressure input reductions are based on the activity-pressure contributions, effectiveness of measure types, links between existing measures and measure types, and projected development of human activities. The activity-pressure data are at the level of five sub-areas (Figure 2), and the effectiveness of measures data at the Baltic Sea level, and thus the total pressure reductions are presented for the five sub-areas.

The projected reductions account for the joint impacts across the measure types, as well as the spatial area where the pressure inputs can be reduced to avoid overestimating the pressure input reductions. Pressure reductions can be positive (pressure is reduced), negative (pressure is increased) or zero (no change in pressure), depending on the combined effect of existing measures and changes in the extent of human activities. When the reduction in pressure inputs from existing measures is larger than the increase from changes in human activities, pressure inputs are reduced.

Topic specific model structure, assumptions, and challenges

The SOM assessment of underwater noise uses a simplified single metric of percent reduction in place of the interacting metrics of Decibels and Hertz, and combined noise injury and disturbance into the single pressure of impulsive noise. While this simplification is useful for managing the size of the analysis and corresponds better with the analysis structure for other topics in the SOM analysis, it does limit the applications of the assessment and the ability to incorporate literature estimates of the effectiveness of measures into the analysis. As a result of this simplification, the SOM noise results should not be used in place of a literature backed cost-benefit analysis or environmental impact assessment. Further reflection on this issue can be found in the section Lessons learned.

Using the standard SOM activity list, the generation of continuous noise by stationary marine structures would be diluted across too many activities to allow for a quantitative assessment. To account for this issue, marine and coastal infrastructure (excluding military infrastructure) was created as an activity for the SOM assessment on underwater noise. Marine and coastal infrastructure includes 11 standard SOM activities: transport – shipping infrastructure, tourism and leisure infrastructure, offshore structures, extraction of oil and gas, aquaculture – marine, renewable energy generation, transmission of electricity and communications, canalisation and other watercourse modifications, coastal defence and flood protection, transport – air, transport – land. See Annex 2 for full activity names and comparison of the standard SOM activity list and the modified list used for the assessment of continuous noise.

Human development scenarios were created for the predominant activities in the SOM analysis as a whole. On an individual topic level, this resulted in variation across topics in how well the main activities contributing to the pressures are covered in the development scenarios, but variation within a topic has generally been low. This is not the case for underwater noise. Continuous noise is well represented, with 70-90% of the activities contributing to its input covered by the human development scenarios, but activities contributing to impulsive noise are poorly represented with 0-4% of activities covered. This presents challenges when interpreting the results. Further discussion of this issue can be found throughout the Discussion section.

Overview of data

The SOM analysis for underwater noise evaluates the pressure reductions achievable by 2030, considering the effects of existing measures and future development of human activities.

Table 1 shows the origin and spatial resolution for the data components in the SOM analysis for underwater noise. Activity-pressure input contributions are based on expert data. Information on existing measures comes from literature reviews and Contracting Parties, and development of human activities is based on existing literature, data, and projections.

Estimates of the effectiveness of measures were collected both via expert surveys and a literature review for all topics included in the SOM analysis. The aim of the literature review was to compile information from scientific articles and reports providing estimates on the effects of measures in reducing pressure inputs that could be used in the SOM analysis, either by including the estimates in the SOM model or by providing comparison points. The literature review was conducted by topic, with the information collected into structured excel files (see the <u>methodology document</u>, Annex 5 and Annex 6 for more information). For underwater noise, 143 effectiveness estimates from 18 studies were compiled. Out of these, no estimates could be included in the model due to the inability to realistically convert the change in noise frequency and intensity found in literature to the single percent change value required for the SOM assessment. This issue is further discussed in the section Lessons learned. Scenarios for the development of human activities were based on existing information and projections for the Baltic Sea region, and pressure-state links were evaluated with expert elicitation.

The spatial resolution (level of detail) differs across the data components of the SOM analysis. All assessment areas are based on the 17 HELCOM scale 2 sub-basins and the assessment area ranges from the single Baltic Sea to individual sub-basins. The activity-pressure contributions for underwater noise are assessed across 5 sub-areas of the Baltic Sea (Figure 2), which have been organized based on the following characteristics:

- **Gulf of Bothnia** (Bothnian Sea, the Quark and Bothnian Bay; Åland Sea and the Archipelago Sea). Justification: hydrographically well separated from the central Baltic, with low levels of shipping and extensive ice coverage in winter. Also, core habitat for the Bothnian subpopulation of ringed seals, which is considered healthier than the subpopulations in the Gulf of Finland/Gulf of Riga.
- **Gulf of Finland**. Justification: Like the Gulf of Bothnia, these waters are shallower waters and thus separated from the deeper central Baltic. Also, these waters, together with Gulf of Bothnia, constitute the main habitat for ringed seals.
- **Gulf of Riga**. Justification: Because of its different shipping activity as well as wave climate and water depth compare to Central Baltic. It is also partly ice covered in winter.
- **Central Baltic** (Arkona Basin, Bornholm Basin, N Baltic Proper, E+W Gotland Basin, Gulf of Gdansk). Justification: Hydrographically well-defined and dominated by deep, partly anoxic waters.
- Western Baltic (Kattegat, Great Belt, the Sound, Kiel Bay, Bay of Mecklenburg). Justification: shallow waters and narrow straits with heavy shipping. Hydrographically well separated from the Central Baltic by the southern shallows of the Sound and the Darss sill.

The effectiveness of measure types in reducing pressures and the effect of development of human activities are assessed at the Baltic Sea scale. Table 1 shows the origin and spatial resolution for the data components in the SOM analysis for underwater noise.

Data component	Origin of data	Spatial resolution
Activity-pressure contributions	Expert evaluation	5 sub-areas (Figure 2)
Existing measures	Literature review, Contracting Parties	17 sub-basins
Effectiveness of measures	Expert evaluation	Whole Baltic Sea
Development of human activities	Literature review, existing data and projections	Whole Baltic Sea
Pressure-state links	NA	NA

 Table 1. Data for underwater noise (more information on data collection is available in the methodology document)

Figure 2. Spatial division of the Baltic Sea used for determining contributions of human activities to the input of three underwater noise types. The five areas are: Western Baltic (Kattegat, Great Belt, The Sound, Kiel Bay, Bay of Mecklenburg); Central Baltic (Arkona Basin, Bornholm Basin, Gdansk basin, Eastern Gotland Basin, Western Gotland Basin, Northern Baltic Proper); Gulf of Riga: Gulf of Finland; and Gulf of Bothnia (Åland Sea, Bothnian Sea, The Quark, Bothnian Bay).

Development of human activities

In addition to existing measures, changes in the extent of human activities may affect pressure inputs over time. Four scenarios for future changes in human activities were developed: 1) no change, 2) low change, 3) moderate (most likely) change, and 4) high change. These alternative scenarios aim to capture uncertainties and variation in the future development of human activities. The results of the SOM analysis were estimated for each of the four scenarios to assess how the alternative assumptions on the development of human activities affect the findings. Detailed results are presented for the most likely development scenario, and implications of using the other scenarios on the results are reviewed in the discussion section.

The scenarios specify a percent change in each activity in 2016–2030 based on existing information and projections from the Baltic Sea region (see detailed information and references in the <u>methodology document</u>). Change scenarios were made only for predominant activities in the Baltic Sea region, including agriculture, forestry, waste waters, (commercial) fish and shellfish harvesting, aquaculture, renewable energy production, tourism and leisure activities, transport shipping and transport infrastructure. Other activities are assumed to stay unchanged. This means that only 9 of the 31 standard SOM activities have change scenarios in the SOM analysis. This results in varying influence of these scenarios on the results across topics, pressures and state components, depending on the significance of the activities to the pressure inputs relevant to the topic.

The coverage of activities that contribute to the input of noise in the development scenarios is high for continuous noise and very low for impulsive noise. The main activities contributing to continuous noise, i.e. shipping, tourism and leisure activities, and fish and shellfish harvesting, have all been included, and thus 70-90% of the activities contributing to the input of continuous noise have development scenarios. Shipping is expected to increase by 20% and tourism and leisure activities by 30% by 2030, while fish and shellfish harvesting is expected to remain constant in the most likely scenario. The situation is different for impulsive noise, which is mainly affected by military operations, research, survey and educational activities, and marine and coastal construction. The joint contribution of these activities to the input of impulsive noise is 65-90%, depending on the sub-area. None of these have development scenarios and their extent is thus assumed to stay constant until 2030. Overall, only 0-4% of the activities contributing to the input of impulsive noise are covered by human development scenarios. This is a considerable deficiency in the analysis. The difference in the existence of development scenarios for the activities contributing to the noise input across the noise types should be kept in mind when examining and interpreting the results.

More information on the development scenarios and source materials is given in section 9 of the <u>methodology report</u>.

The current situation with COVID-19 and its possible implications to the development of human activities is not reflected in the scenarios, as there is no information on the long-term effects it may have on the economy or activities. The current situation poses a challenge for choosing the most likely scenarios for the development of human activities, which has been done based on currently available information.

Results and interpretation

Background

The SOM results are presented in the format of percent shares or probabilities. The main finding of the analysis is the probability to achieve GES or specific state improvements/pressure input reductions, taking into consideration the effects of existing measures and changes in the activities on pressure inputs. The contribution of activities to pressure inputs, the effect of measures on pressure inputs, and the significance of pressures to state components are presented as percent values (e.g. how many percent would the measure reduce the pressure input). Results are presented mainly in tables, which show the most likely (expected) values and standard deviations. Standard deviation is a way of showing the variation in the values. When it is high, values are spread over a wider range, and when it is low, values are closer to the most likely value. Figures and graphs presenting distributions are included in the annexes. They show the same results as the tables but present either more detailed information or an alternative visualisation of the results.

For the data that are based on expert surveys, the confidence rating gives the most common answer to experts' assessment of the confidence in their own survey responses on a low-moderate-high scale. More detailed information on how each result has been calculated is presented in <u>a separate document</u>.

This document presents the detailed results based on the expert-based data (survey responses). Literature data on the effectiveness of measures has been collected and included in an alternative model estimation. In the detailed results, the projected development of human activities is based on the most likely future development until 2030 (for details, see the <u>methodology document</u>), and the impacts of alternative scenarios on human activities are examined in the discussion section.

Format of presentation

The format the results are reported in different ways (not presented, qualitative/semiquantitative, quantitative) depending on the type of result and the number of participating experts. Further, for all results utilizing other SOM results as input data, reporting is done at the most conservative standard used in the input data. In practice this means that if one input data point is reported as 'insufficient data', all results using that data point will also be reported as 'insufficient data'; similarly for qualitative/semi-quantitative data points. However, note that this standard is only applied in the case of data points actively used to calculate another result. For example, many measure types are hypothetical or otherwise not implemented in the Baltic Sea and therefore do not factor into results on projected pressure input reductions from existing measures. Insufficient data for such measure types does not affect reporting other results that rely on data for effectiveness of measure types. Results that do not meet the data standards described here and in greater detail below, are marked with 'insufficient data' in the report. All the data components for underwater noise meet the thresholds for fully quantitative presentation. For results concerning required pressure reductions and significance of pressures to state components, results with 2 or fewer respondents are not reported; results with 3 to 4 respondents will be either not reported, or qualitatively/semi-quantitatively reported based on feedback from the SOM topic teams or other HELCOM expert body; results with 5 or more respondents are reported quantitatively. This standard allows flexibility for reporting on assessments that are of spatially limited areas and therefore have fewer experts available to survey, while also being somewhat conservative in reporting fully quantitative results.

For expert-based effectiveness of measures results, measure types with 5 or more respondents are reported quantitatively and those with 4 or fewer respondents are listed as having insufficient data.

For expert-based activity-pressure input results, expert responses where primarily sought through the HELCOM expert networks in the form of national responses. Individual expert responses were accepted but were consolidated into average responses by country to conform to the format of other responses. Thus, the maximum number of responses is 9. This maximum is rarely reached due to responses typically only applying to areas adjacent to the specific country. Acknowledging this, activity-pressure input relationships are reported if there are expert responses from 3 or more countries or if the number of countries providing expert responses is greater than 1/2 the number of countries bordering any given sub-area (see Table 2 below; responses from experts based in any HELCOM country will be counted toward the reporting threshold, i.e. the reporting assessment is not limited to responses from bordering countries).

Table 2. Required number of countries providing expert responses to the activity-pressure inp	out survey to
meet the minimum data threshold for reporting.	

Bordering countries	Required number of countries providing expert responses to meet minimum data threshold	Example areas
1	1	Western Gotland Basin
2	2	Bothnian Sea, Gulf of Riga
3	2	Gulf of Finland
4+	3	Eastern Gotland Basin, Baltic
		Sea

What are the reductions in pressure inputs from existing measures?

There are no GES thresholds for any of the underwater noise types, and therefore a proper analysis of sufficiency of measures has not been possible. Additionally, no quantitative status assessment was made during the most recent HOLAS assessment period; with the sources and potential impact of underwater noise only described. The focus of the SOM analysis has been to evaluate the changes in the input of noise in 2016-2030, considering the effects of existing measures and changes in the extent of human activities. Table 3 shows the projected reductions in the input of noise, further differentiated into continuous noise 63/125 Hz, continuous noise 2 kHz, and impulsive noise with peak energy below 10 kHz.

Pressure increases are projected for the *input of continuous noise 63/125 Hz and input of continuous noise 2 kHz* in all sub-areas, as shown by the negative values. In this case, the pressure reductions from existing measures cannot compensate for the increases caused by the projected future development of activities. Few existing measures addressing continuous noise were reported. In addition, shipping and tourism and leisure activities are expected to increase by 20% and 30% by 2030, respectively, in the most likely scenario. As these cover 70-90% of the activities contributing to the input of continuous noise (see Table 5) and there are few existing measures, the projected changes are mainly driven by the changes in the extent of the activities.

No change or low reductions in the *input of impulsive noise with peak energy below 10 kHz* are expected in all sub-areas. For impulsive noise, no development scenarios have been made for the main activities contributing to its input, and thus activities such as military operations, marine and coastal construction, and research, survey and educational activities are expected to remain constant until 2030. This may not be accurate. Increases in the extent of transport infrastructure and offshore windfarms by 2030 are expected, which could indicate increase in marine and coastal construction. If this is the case, lower reductions (or potentially increases) in the input of impulsive noise would be projected. Further, no existing measures were reported for the direct to impulsive noise measure types (Table 4.4), and thus, no additional species-specific pressure reductions are estimated to occur for noise sensitive mammals due to these measure types.

Overall, the different results for the projected changes in the input of continuous and impulsive noise seem to stem mainly from the projected changes in the extent of the activities contributing to their input, and how well the SOM analysis has been able to account for the activities in the development scenarios. Further details on the effectiveness of different measure types and activity-pressure input contributions can be found in Tables 4 and 5.

Pressure	Input of continuous noise 63/125 Hz	Input of continuous noise 2 kHz	Input of impulsive noise with peak energy below 10 kHz
Sub-area			
Western Baltic	-13	-14	16
	(3) •••	(4) ●●●	(9) ○●●
Central Baltic	-10	-10	5
	(4) ○●●	(5) ○●●	(4) 00●
Gulf of Riga	-18	-19	0
	(1) ●●●	(2) ●●●	(0)
Gulf of Finland	-9	-10	1
	(6) 00●	(7) 00●	(1) 00•
Gulf of Bothnia	-6	-4	3
	(10) 00•	(13) 00•	(3) 00•

Table 3. Projected total pressure reductions (%) of noise from existing measures in 2016-2030. The table depicts the most likely/expected total pressure reduction, and standard deviation is given in parenthesis.

Colour scale for the pressure reductions in percent (based on the expected value):

<mark><0%</mark>, <mark>0-10%</mark>, <mark>10-20%,</mark> 20-40%, <mark>40-60%</mark>, 60-100%

Categories for the certainty of the pressure reductions (based on the relative size of the standard deviation to the expected value): low: 000, moderate: 000, high: 000

Data used: expert estimates of activity-pressure input contributions, expert estimates of effectiveness of measure types, information on existing measures, literature and projections on development of human activities

How effective are measure types in reducing pressure inputs?

This section presents the percent effectiveness of measure types in reducing the *input of continuous noise 63/125 Hz, input of continuous noise 2 kHz, input of impulsive noise with peak energy below 10 kHz,* and *direct to impulsive noise to porpoises and seals* from a specific activity. The estimates are presented per activity, i.e. they portray the percent reduction in the pressure input from the activity in question, and not in the total input across all activities. Information on the reductions over all activities contributing to the pressure input is given in the section on the impacts of measure types. Data on the effectiveness of measure types originate from expert surveys on effectiveness of measures.

Tables 4.1-4.4 present the most likely percent effectiveness and its standard deviation per noise type, activity and measure type, and pooled over experts. The effectiveness estimates can be compared across measure types to assess, on average, how effective they are in relation to each other in reducing the pressure input from the specific activities, or across activities to assess which measure type could be the most effective for each activity. Confidence depicts the most common rating of expert's confidence in their own responses to the effectiveness of measure types question. Annex 10 presents the distributions of the effectiveness of measure types in controlling the input of noise for additional information.

Most of the measure types have a low or moderate effectiveness in reducing the input of continuous noise 63/125 Hz from the activities (Table 4.1). *Promotion of alternative/low noise technologies* could reduce noise input from all six activities with a low to moderate effectiveness. *Spatial/temporal restrictions for sensitive areas and species* seems to be the most effective measure in reducing the input of noise from shipping.

The measure types to reduce the input of continuous noise 2 kHz are the same as those to reduce input of continuous noise 63/125 Hz (Table 4.2). Effectiveness of all measure types to reduce the input of continuous noise 2 kHz ranges from low to moderate. There seem to be several effective measure types for reducing the input of noise from tourism and leisure activities.

Measures reducing the input of continuous noise are not currently widely implemented in the Baltic Sea region, as indicated in tables 4.1-4.2 (Has corresponding existing measures in the SOM analysis (Yes/No)). However, there is a range of available measures to choose from, as the region considers action on this topic. In particular, the Regional Action Plan on Underwater Noise, currently being drafted, provides a list of regional and voluntary national actions addressing sources of continuous noise.

Table 4.3 shows the effectiveness of measure types in reducing the input of impulsive noise with peak energy below 10 kHz. Most have low or moderate effectiveness. Measure types that target research, survey and educational activities seem to have rather low effectiveness. However, *spatial/temporal restrictions for sensitive areas and species* was considered effective at controlling the impacts from *marine and coastal construction*.

The effectiveness of measure types in reducing the direct pressure of noise to porpoises and seals is generally low (Table 4.4). These measure types reduce the pressure directly by limiting the amount of received noise rather than the amount of noise created. While this may reduce injury caused by impulsive noise, disturbance is likely unaffected or possibly increased due to these measures. Their assessment given the SOM structure of a combined

metric of disturbance and injury is uncertain. Further work is required before these values are used for any purpose outside this analysis. More reflection can be found in the section Lessons learned.

Overall, the effectiveness of the measure types in reducing the input of noise ranges from low to moderate, and the uncertainty of the effectiveness is rather high based on the standard deviations. Expert's confidence in their assessment is on average moderate but varies across the noise type and activity. Estimates of the effectiveness of measure types are used to assess the effects of existing measures in reducing the input of noise to the Baltic Sea and calculate the reductions from existing measures by 2030. Table 4.1 Effectiveness of measure types (%) in reducing the input of continuous noise 63/125 Hz. The effectiveness of a measure type is the percent reduction in the pressure resulting from a specific activity. The table depicts the most likely/expected effectiveness, and standard deviation is given in parenthesis.

Measure	Activity	Fish and	Extraction of	Restructuring	Tourism and	Transport –	Marine and	Has corresponding
type ID	Measure type	harvesting	minerais	morphology	activities	snipping	coastal	SOM analysis (Yes/No)
150	Promotion of alternative/low noise	24	23	18	16	29	19	Yes
	technologies	(18) 00•	(18) 00•	(12) 00●	(8) ○●●	(19) 00●	(14) 00●	
151	Implementation of restrictions/permitting	21	Not assessed	Not assessed	20	32	Not assessed	No
	based on ship noise classifications	(11) 0••			(11) ○●●	(13) ○●●		
152	Use of shore-based power while in port	Not assessed	Not assessed	Not assessed	Not assessed	11	Not assessed	No
						(10) 00●		
153	Optimized scheduling to reduce time spent at	Not assessed	Not assessed	Not assessed	Not assessed	15	Not assessed	No
	anchorage sites					(10) 00●		
154	Spatial/temporal restrictions for sensitive areas	30	Not assessed	Not assessed	23	43	Not assessed	No
	and species	(14) ○●●			(9) ○●●	(19) ○●●		
155	Speed limits in sensitive areas or times	21	Not assessed	Not assessed	20	34	Not assessed	No
		(9) ○●●			(9) ○●●	(12) ○●●		
156	Raise consumer awareness about noise input	Not assessed	Not assessed	Not assessed	Not assessed	17	Not assessed	No
	and effects					(12) 00●		
157	Improve awareness of ship owners/companies	15	Not assessed	Not assessed	14	23	Not assessed	No
	about noise input, effects, and avoidance	(10) 00●			(10) 00●	(12) ○●●		
158	Introduce engine noise standards	Not assessed	Not assessed	Not assessed	19	Not assessed	Not assessed	No
					(7) ○●●			
	Confidence	Moderate	Moderate -	Low	Moderate	Moderate	Moderate -	
			Low				Low	
	Number of experts	7	7	7	7	8	7	

Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100% Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: 000, moderate: 000, high: 000 Data used: expert estimates of the effectiveness of measure types

Full activity names:

- Fish and shellfish harvesting (all gears; professional, recreational) -
- Extraction of minerals (rock, metal ores, gravel, sand, shell) -
- Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material) -
- Tourism and leisure activities (boating, beach use, water sports, etc.) -
- Transport shipping (incl. anchoring, mooring) -
- Marine and coastal construction -

Table 4.2 Effectiveness of measure types (%) in reducing the *input of continuous noise 2 kHz*. The effectiveness of a measure type is the percent reduction in the pressure resulting from a specific activity. The table depicts the most likely/expected effectiveness, and standard deviation is given in parenthesis.

Measure	Activity	Fish and	Extraction of	Restructuring	Tourism and	Transport –	Has corresponding
type iD	Measure type	harvesting	mmerals	morphology	activities	smpping	SOM analysis (Yes/No)
150	Promotion of alternative/low noise technologies	23	25	31	34	30	Yes
		(21) 00•	(24) 00●	(21) 00•	(21) 00•	(26) 00•	
151	Implementation of restrictions/permitting based on ship	23	Not assessed	Not assessed	36	26	No
	noise classifications	(23) 00•			(16) 0••	(21) 00•	
152	Use of shore-based power while in port	Not assessed	Not assessed	Not assessed	Not assessed	10	No
						(15) 00●	
153	Optimized scheduling to reduce time spent at	Not assessed	Not assessed	Not assessed	Not assessed	12	No
	anchorage sites					(11) 00●	
154	Spatial/temporal restrictions for sensitive areas and	31	Not assessed	Not assessed	38	31	No
	species	(23) 00•			(14) ○●●	(21) 00•	
155	Speed limits in sensitive areas or times	13	Not assessed	Not assessed	39	27	No
		(14) 00●			(17) ○●●	(19) 00•	
156	Raise consumer awareness about noise input and	Not assessed	Not assessed	Not assessed	Not assessed	13	No
	effects					(12) 00●	
157	Improve awareness of ship owners/companies about	14	Not assessed	Not assessed	29	20	No
	noise input, effects, and avoidance	(11) 00●			(14) ○●●	(16) 00●	
158	Introduce engine noise standards	Not assessed	Not assessed	Not assessed	36	Not assessed	No
					(17) 0••		
	Confidence	Moderate	Moderate -	Low	High	Moderate	
			Low				
	Number of experts	5	7	7	5	6	

Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100% Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: 00•, moderate: 0••, high: ••• Data used: expert estimates of the effectiveness of measure types Full activity names:

- Fish and shellfish harvesting (all gears; professional, recreational)
- Extraction of minerals (rock, metal ores, gravel, sand, shell)
- Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
- Tourism and leisure activities (boating, beach use, water sports, etc.)
- Transport shipping (incl. anchoring, mooring)

Table 4.3 Effectiveness of measure types (%) in reducing the *input of impulsive noise with peak energy below 10 kHz*. The effectiveness of a measure type is the percent reduction in the pressure resulting from a specific activity. The table depicts the most likely/expected effectiveness, and standard deviation is given in parenthesis.

Measure type ID	Activity Measure type	Restructuring of seabed morphology	Military operations	Research, survey and educational activities	Marine and coastal construction	Has corresponding existing measures in the SOM analysis (Yes/No)
150	Promotion of alternative/low noise technologies	30 (24) ○○●	36 (26) 00●	20 (16) ○○●	Not assessed	Yes
154	Spatial/temporal restrictions for sensitive areas and species	36 (28) ○○●	Not assessed	23 (18) 00•	43 (13) ●●●	No
159	Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction	Not assessed	Not assessed	Not assessed	30 (11) ○●●	Yes
160	Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications	29 (23) ○○●	Not assessed	19 (18) 00●	37 (12) 0●●	No
161	Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)	Not assessed	Not assessed	Not assessed	39 (11) ●●●	Yes
162	Inclusion of noise impact risks for sensitive species in EIAs	20 (14) 00●	Not assessed	12 (15) 00●	24 (10) ○●●	Yes
163	Optimized scheduling (max intensity vs duration)	Not assessed	Not assessed	Not assessed	31 (15) ○●●	No
164	Mandatory noise monitoring and noise restrictions	35 (25) 00●	Not assessed	20 (15) 00●	Not assessed	Yes
165	Spatial/temporal restrictions of testing, training, and exercises for sensitive areas and species	Not assessed	35 (21) 00●	Not assessed	Not assessed	Yes
166	Best practice for ship shock trials	Not assessed	21 (22) 00•	Not assessed	Not assessed	No
167	Best environmental practices for UXO disposal	Not assessed	33 (23) 00●	Not assessed	Not assessed	No
	Confidence	High	Moderate	Moderate	High	
	Number of experts	7	6	7	5	

Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100% Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: 00•, moderate: 0••, high: ••• Data used: expert estimates of the effectiveness of measure types Full activity names:

Full activity names:

- Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
- Military operations (infrastructure, munitions disposal)
- Research, survey and educational activities (seismic surveys, fish surveys)
- Marine and coastal construction

Table 4.4 Effectiveness of measure types (%) in reducing the *direct pressure of noise to porpoises and seals.* The measure types reduce the pressure directly by limiting the amount of received noise rather than the amount of noise created. The effectiveness of a measure type is the percent reduction in the specific pressure. The table depicts the most likely/expected effectiveness, and standard deviation is given in parenthesis. Further methodological development is required before these values are used for any purpose outside this analysis.

Measure type ID	Pressure Measure type	Direct to impulsive noise pressure (porpoises)	Direct to impulsive noise pressure (seals)	Has corresponding existing measures in the SOM analysis (Yes/No)
168	Use of acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)	15 (13) ○○●	17 (11) 00●	No
169	Optimized use and specifications for acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)	11 (8) ○○●	17 (14) ○○●	No
	Confidence	Moderate	Moderate	
	Number of experts	5-6	6	

Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100% Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: 00•, moderate: 0••, high: ••• Data used: expert estimates of the effectiveness of measure types

Which activities contribute to pressure inputs?

Table 5 shows the contribution of activities to the input of underwater noise, based on expert elicitation. The Baltic Sea was divided into five sub-areas for the activity-pressure assessment (see Figure 2). The direct impulsive noise (porpoises and seals) from measures that use acoustic deterrence devices affects the species directly, not through activities, and thus the activity-pressure contribution is not relevant.

The results are similar for the two frequency types of continuous noise. Eight activities were identified to contribute to the input of continuous noise. *Shipping* was considered to contribute the most in all five areas of the Baltic Sea. Besides *shipping*, *tourism* and *leisure* activities and fish and shellfish harvesting had a relatively high impact in some sub-areas. The contribution of other activities (restructuring of seabed morphology, military operations, research and educational activities, marine and coastal constructions, as well as infrastructure) was rather small.

Seven different activities were identified to contribute to the input of impulsive noise, and these are to some extent different from the activities contributing to continuous noise. The activities with the highest contribution to impulsive noise vary across the five areas. The three main activities contributing to the input of impulsive noise are *military operations*, *research, survey and educational activities* and *marine and coastal construction. Military operations* have a high contribution in the Gulf of Riga and Gulf of Finland, and *research and educational activities* in the Gulf of Bothnia. The contribution of the other activities is rather low in all areas.

The certainty of the activity-pressure contribution estimates ranges from low to high.

Table 5. Activity-pressure contributions (%). The activity-pressure contributions show the percentage share the activity contributes to the input of underwater noise. The table depicts the most likely/expected contribution and standard deviation is given in parenthesis. Zero values mean that the contribution is less than 0.5%.

Activity	Fish and	Restructuring	Tourism and	Transport –	Military	Research,	Marine and	Marine and	Extraction of	Other/ not	Number
	shellfish	of seabed	leisure	shipping	operations	survey and	coastal	coastal	minerals	determined	of
	harvesting	morphology	activities			educational	construction*	infrastructure*			experts
Noise type and area						activities					
Continuous noise	7	2	4	77	2	0	0	2		5	4
63/125 Hz	(4) ○●●	(2) 00•	(2) ○●●	(5) ●●●	(2) 00•	(0) ●●●	(0) ●●●	(2) 00•		(1) ●●●	
Western Baltic											
Continuous noise	10	2	3	76	2	2	1	1		3	7
63/125 Hz	(7) 00●	(2) 00•	(2) 00●	(8) ●●●	(2) 00•	(2) 00●	(1) 00•	(1) 00•		(3) 00•	
Central Baltic											
Continuous noise	16	1	30	44	2	1	1	1		5	2
63/125 Hz	(4) ●●●	(1) 00•	(5) ●●●	(5) ●●●	(2) 00•	(1) 00•	(0) 00•	(0) 00•		(5) 00●	
Gulf of Riga											
Continuous noise	8	3	7	76	1	1	1	1		3	2
63/125 Hz	(2) •••	(2) 00•	(3) ○●●	(4) ●●●	(0) 00•	(1) 00•	(0) 00•	(0) 00•		(2) 00●	
Gulf of Finland											
Continuous noise	4		19	69						8	3
63/125 Hz	(4) 00●		(18) 00●	(17) ●●●						(4) ○●●	
Gulf of Bothnia											
Continuous noise 2 kHz	7	2	15	60	5	1	1	2		8	4
Western Baltic	(3) 0 • •	(2) 00•	(7) ○●●	(10) ●●●	(7) 00•	(0) ●●●	(0) ●●●	(2) 00•		(4) ○●●	
Continuous noise 2 kHz	10	2	8	66	4	3	1	1		5	7
Central Baltic	(7) ○●●	(2) 00•	(4) ○●●	(9) ●●●	(5) 00•	(4) 00●	(1) 00•	(1) 00•		(4) 00●	
Continuous noise 2 kHz	10	2	32	45	3	1	1	1		5	2
Gulf of Riga	(3) ●●●	(2) 00•	(8) ●●●	(7) ●●●	(2) 00•	(1) 00•	(1) 00•	(0) 00•		(5) 00●	
Continuous noise 2 kHz	7	1	13	69	3	1	1	1		5	2
Gulf of Finland	(2) •••	(0) 00•	(6) ○●●	(7) ●●●	(2) 00•	(0) 00•	(1) 00•	(1) 00•		(5) 00•	
Continuous noise 2 kHz	4	0	9	78	0	0		0		8	3
Gulf of Bothnia	(3) 00•	(0) ●●●	(9) 00●	(8) ●●●	(0) ●●●	(0) ●●●		(0) •••		(3) ○●●	
Impulsive noise					29	35	24			12	4
Western Baltic					(21) 00•	(22) 00•	(21) 00•			(8) 00•	
Impulsive noise	2	5	2		14	36	17		2	8	6
Central Baltic	(3) 00•	(8) 00•	(3) 00•		(9) 00●	(20) ○●●	(15) 00•		(3) 00•	(5) 00●	
Impulsive noise		3			64	16	6		1	10	2
Gulf of Riga		(3) 00•			(12) •••	(7) ○●●	(7) 00•		(1) 00•	(10) 00•	
Impulsive noise		3			77	11	6		1	3	2
Gulf of Finland		(3) 00•			(7) ●●●	(3) •••	(6) 00•		(1) 00•	(2) 00•	
Impulsive noise					13	73	6			8	3
Gulf of Bothnia					(10) 00●	(10) ●●●	(6) 00•			(3) ○●●	

*) Unique or modified activities for noise (from the activity-pressure survey): Marine and coastal construction, i.e. pile driving, vehicle operation, excavation, etc.; Marine and coastal infrastructure, i.e. platforms, offshore renewables, bridges, tunnels, harbours etc. excluding military infrastructure.

Colour scale for the contribution of the activity to the pressure in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100%

Categories for the certainty of the activity-pressure contributions (based on the relative size of the standard deviation to the expected value): low: 00•, moderate: 0••, high: •••

Data used: expert estimates of activity-pressure contributions

Full activity names:

- Fish and shellfish harvesting (all gears; professional, recreational)
- Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
- Tourism and leisure activities (boating, beach use, water sports, etc.)
- Transport shipping (incl. anchoring, mooring)
- Military operations (infrastructure, munitions disposal)
- Research, survey and educational activities (seismic surveys, fish surveys)
- Marine and coastal construction
- Marine and coastal infrastructure
- Extraction of minerals (rock, metal ores, gravel, sand, shell)

What are the impacts of measure types?

The impacts of measure types show the impact of measure types on reducing the input of noise in the Baltic Sea (Annex 11). They include the effectiveness of measure types and the contribution of activities to the input of noise. Thus, the impact shows how much the measure type reduces the pressure input across all activities contributing to the input and gives indications on which measures could be the most relevant in addressing underwater noise.

For the input of continuous noise 63/125 Hz, *spatial/temporal restrictions for sensitive areas and species* seems to be the most impactful measure type in all sub-areas. Other measure types having a relative high impact are *speed limits in sensitive areas or times*, *implementation of restrictions/permitting based on ship noise classifications*, and *promotion of alternative/low noise technologies*. The results are rather similar for the input of continuous noise 2 kHz as the same four measure types are among the most impactful, but there are less differences in the impacts across them.

For the input of impulsive noise with peak energy below 10 kHz, there is quite a lot of variation in the impacts of measure types across sub-areas. *Promotion of alternative/low noise technologies, spatial/temporal restrictions for sensitive areas and species,* and *regionally harmonized and intensified consideration of alternative/low noise technology in permit applications* are among the most impactful measures in several areas. In addition, *best environmental practices for UXO disposal* is considered to have rather high impact in some sub-areas.

Additional detailed information on the impacts of measures is given in Annex 11.

In 2013 it was agreed in the HELCOM Copenhagen Ministerial Declaration that the level of ambient and distribution of impulsive sounds in the Baltic Sea should not have negative impact on marine life and that human activities that are assessed to result in negative impacts on marine life should be carried out only if relevant mitigation measures are in place, and accordingly as soon as possible and by the end of 2016, using mainly already on-going activities, to:

- establish a set of indicators including technical standards which may be used for monitoring ambient and impulsive underwater noise in the Baltic Sea;
- encourage research on the cause and effects of underwater noise on biota;
- map the levels of ambient underwater noise across the Baltic Sea;
- set up a register of the occurrence of impulsive sounds;
- consider regular monitoring on ambient and impulsive underwater noise as well as possible options for mitigation measures related to noise taking into account the ongoing work in IMO on nonmandatory draft guidelines for reducing underwater noise from commercial ships and in CBD context;

To achieve these objectives, a Regional Baltic Underwater Noise Roadmap 2015-2017, was adopted at the 37th Meeting of the Helsinki Commission (Annex 3 of the Outcome of HELCOM 37-2016). In 2019, an analysis of the progress made implementing the four steps that define the Underwater Noise Roadmap was made, being the starting point in the drafting of the Regional Action Plan on Underwater Noise. The Action Plan, once adopted, will provide the list of measures to be applied regionally and nationally (voluntarily) to

achieve a less noisy Baltic Sea. It is therefore too early to foresee the impact of these possible upcoming measures.

What are the impacts of existing measures?

This section presents information about existing measures affecting the input of continuous noise 2 kHz, input of continuous noise 63/125 Hz and input of impulsive noise with peak energy below 10 kHz. In the SOM analysis, existing measures are those measures in current policy frameworks (e.g. BSAP, EU MSFD, EU WFD, EU Biodiversity Strategy 2020) that affect pressures and environmental state within the time frame of the analysis (2016–2030). This includes measures that have been implemented, are partially implemented or are planned to be implemented by 2030. Measures which have already been fully implemented and have fully affected pressures and environmental state by 2016 have been excluded, as no further improvement of status is expected during in 2016–2030. Information about existing measures was compiled through a literature review and from Contracting Parties.

The impact is the percent reduction in a specific pressure from implementing the measure in the relevant spatial area. It has been calculated based on the effectiveness of the measure, proxied by the effectiveness of the measure type it corresponds to, and the contribution of activities to the pressure in question. Similar to the impact of a measure type, the impact of an existing measure indicates how much the measure reduces the pressure across all activities contributing to the pressure.

Tables 6.1, 6.2 and 6.3 present the impacts of existing measures in reducing the input of continuous noise 2 kHz, continuous noise 63/125 Hz and impulsive noise with peak energy below 10 kHz. The impacts are presented both for the Baltic Sea scale and for the area affected by the existing measure. In addition, information on the share of the Baltic Sea area affected by the existing measure is included. Both the effectiveness of the measure and the spatial area affected are relevant for the impact at the Baltic Sea scale. Some existing measures may have high impact in the affected area, but their impact at the Baltic Sea scale is low because they only affect a small area, while some measures may have a relatively low impact in the affected area but affect a large share of the Baltic Sea.

There are three existing measures affecting the input of both continuous noise types, and six measures affecting the input of impulsive noise. Impacts of the measures reducing continuous noise can be considered moderate in the area affected, but they are low at the Baltic Sea scale due to the limited area affected. The impacts in the affected area are of similar size across the measures, and the difference comes from the varying share of the Baltic Sea affected by the measure. For impulsive noise, the impacts of the measures at the Baltic Sea scale are again low, but there is more variation in the impact in the area affected and the area affected. Most of the measures for impulsive noise affect a limited area and have a low impact at the Baltic Sea scale.

Table 6.1. Impacts of existing measures in reducing the input of continuous noise 2 kHz. Impact is the percent reduction in a specific pressure from implementing the measure. Standard deviations are given in parenthesis. Note that values less than 0.5 have been rounded to zero. Measure name and description correspond to those used in Annex 4 for referencing purposes. In rare cases, the name and description may not be representative of the existing measure due to the free text reporting format used during existing measures data collection.

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
Noise 1 - Promotion of decisions to reduce ship noise in the International Maritime Organization	The objective of the measure is to promote the implementation and further development of the International Maritime Regulations for the Reduction of Underwater Noise Reduction of Merchant Shipping in the IMO. The intention is to take into account the IMO's objectives and regulations to reduce noise from ships' engines, propellers and hulls in national legislation. Schedule: 2016–2021	Shipping	FI	Promotion of alternative/low noise technologies	5 (4)	25 (19)	20
Support for development and improvement of environmentally friendly (including reduced noise) and low-emission transport systems	Planned, not yet implemented; Support for Development and improvement of environmentally friendly (including reduced noise) and low-emission transport systems, including inland waterways and maritime transport, ports, multimodal connections and airport infrastructure to promote sustainable regional and local mobility.	Shipping	PL	Promotion of alternative/low noise technologies	2 (1)	24 (17)	7
Criteria and incentive systems for environmentally friendly ships (UZ2-01, M405)	No description	Shipping	DE	Promotion of alternative/low noise technologies	1 (1)	23 (17)	4

Data used: information about existing measures and their spatial scale, expert estimates of effectiveness of measures types, expert estimates of activity-pressure contributions Full activity names:

- Transport – shipping (incl. anchoring, mooring)

Table 6.2. Impacts of existing measures in reducing the input of continuous noise 63/125 Hz. Impact is the percent reduction in a specific pressure from implementing the measure. Standard deviations are given in parenthesis. Note that values less than 0.5 have been rounded to zero. Measure name and description correspond to those used in Annex 4 for referencing purposes. In rare cases, the name and description may not be representative of the existing measure due to the free text reporting format used during existing measures data collection.

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
Noise 1 - Promotion of decisions to reduce ship noise in the International Maritime Organization	The objective of the measure is to promote the implementation and further development of the International Maritime Regulations for the Reduction of Underwater Noise Reduction of Merchant Shipping in the IMO. The intention is to take into account the IMO's objectives and regulations to reduce noise from ships' engines, propellers and hulls in national legislation. Schedule: 2016–2021	Shipping	FI	Promotion of alternative/low noise technologies	5 (3)	25 (14)	20
Support for development and improvement of environmentally friendly (including reduced noise) and low-emission transport systems	Planned, not yet implemented; Support for Development and improvement of environmentally friendly (including reduced noise) and low-emission transport systems, including inland waterways and maritime transport, ports, multimodal connections and airport infrastructure to promote sustainable regional and local mobility.	Shipping	PL	Promotion of alternative/low noise technologies	2 (1)	26 (15)	7
Criteria and incentive systems for environmentally friendly ships (UZ2-01, M405)	No description	Shipping	DE	Promotion of alternative/low noise technologies	1 (1)	26 (15)	4

Data used: information about existing measures and their spatial scale, expert estimates of effectiveness of measures types, expert estimates of activity-pressure contributions. Full activity names:

- Transport – shipping (incl. anchoring, mooring)

Table 6.3. Impacts of existing measures in reducing the input of impulsive noise with peak energy below 10 kHz. Impact is the percent reduction in a specific pressure from implementing the measure. Standard deviations are given in parenthesis. Note that values less than 0.5 have been rounded to zero. Measure name and description correspond to those used in Annex 4 for referencing purposes. In rare cases, the name and description may not be representative of the existing measure due to the free text reporting format used during existing measures data collection.

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
Action MIT-05	Implement regionally harmonized national threshold limits and guidelines for regulation of underwater noise	Marine & coastal construction	DK, FI, DE, LT, PL, SE	Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction	2 (2)	4 (4)	62
Legislation	Activities by the authorities under the Ministry of Defence that cause impulse noise in the marine environment are, as far as possible, being assessed and adapted to reduce possible adverse effects on marine animals under the Habitats Directive, provided this does not conflict with national security or defence objectives.	Military operations	DK	Spatial/temporal restrictions of testing, training, and exercises for sensitive areas and species	1 (1)	10 (10)	11
Legislation	As far as possible, marine animals under the Habitats Directive are not exposed to im-pulse sound which leads to permanent hearing loss (PTS). The limit value for PTS is currently assessed as 200 and 190 dB re.1 uPa2s SEL for seals and harbour porpoise, respectively. The best knowledge currently available is on these species. However, it is likely that these limits will be revised as new knowledge on the area becomes available.	Marine & coastal construction, Research & surveys, Restructuring of seabed	DK	Inclusion of noise impact risks for sensitive species in EIAs	1 (1)	10 (8)	11

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
NOISE 2 - Reducing impulsive noise caused by underwater construction	The measure consists of the following actions: 1) Collection of research data on the effects of impulsive noise. 2) Collection of impulse-noise building, blasting and dredging activities in the national register (e.g. HERTTA), where the source, intensity and time period of the noise are recorded. The registry facilitates noise monitoring and refines noise data in marine areas. 3) Checking existing guidelines, e.g. marine wind farms. If necessary, update the guidelines and Recommended Practices for example on the protection zone from which the animals are expelled, on the duration of the noise and on the timing of the measures. Also, noise-absorbing technical applications are being introduced to reduce the effects of impulsive noise during construction.	Marine & coastal construction	FI	Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)	1 (1)	3 (3)	20
Development and application of biological limit values for the impact of underwater noise on relevant species (UZ6-01, M425)	Development and application of biological limit values for the impact of underwater noise on relevant species	Marine & coastal construction, Research & surveys, Restructuring of seabed	DE	Inclusion of noise impact risks for sensitive species in EIAs	0 (0)	10 (8)	4

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
Measure T9PR1 - Develop requirements for the recording and reduction of impulse noise in the marine environment	New measure: Develop requirements for the recording and reduction of impulse noise in the marine environment, including ecologically sensitive areas, important spawning grounds and areas of importance to mammals. entities engaged in the following activities: -Seismic bottom surveys - the energy level of the equipment generated by the equipment manufacturer. - Bottom Piling - based on the energy level generated by the equipment manufacturer. - Explosive work - by mass of explosive material Use of low frequency sonars - according to the level of noise intensity. - The performance of deterrent devices according to the level of noise intensity.	Marine & coastal construction, Research & surveys, Restructuring of seabed	LT	Mandatory noise monitoring and noise restrictions	0 (0)	9 (8)	2

Data used: information about existing measures and their spatial scale, expert estimates of effectiveness of measures types, expert estimates of activity-pressure contributions. Full activity names:

- Marine and coastal construction
- Military operations (infrastructure, munitions disposal)
- Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
- Research, survey and educational activities (seismic surveys, fish surveys)

Background of respondents

For the effectiveness of measures survey for underwater noise, altogether 11 survey responses with 12 individual contributing experts were received. Two of the answers were a group response, with two and three contributing experts. Some experts participated in more than one response of the activity-pressure survey; seven responses were received from five different contracting parties. The number of experts contributing to the two types of noise surveys by contracting parties is shown in Table 7, with the sub-topic division and geographic area presented in Table 8.

Table 7. Number of experts contributing to the noise surveys

Survey	DE	DK	EE	FI	LT	LV	PL	RU	SE	Total
Effectiveness of measures	3	1	2	-	1	2	-	-	3	12
Activity-pressure contributions	1	1	1	-	-	-	2	-	2	7

Table 8. Number of experts contributing to the noise surveys

Survey	Sub-topic	Geographic area	Response count
Effectiveness	Continuous noise 63/125 Hz	Whole Baltic	9
of measures	Continuous noise 2 kHz	Whole Baltic	7
	Impulsive noise with peak energy below 10 kHz	Whole Baltic	9

For the experts participating in the effectiveness of measures survey, more detailed information about their background is available (Table 9). Experts stated acoustics, environmental protection, marine biology or monitoring and assessment as their field. About half of the experts had at least 10 years of experience in their field. Experts represented research institutions, museums, government institutes, state agencies or ministries.

	Effectiveness of measures survey							
Years	Number of experts	Share of experts						
0-2 years	1	8 %						
3-5 years	1	8 %						
5-10 years	4	33 %						
10-20 years	4	33 %						
over 20 years	2	17 %						

Table 9. Years of experience in the field for noise surveys

Discussion

Impact of alternative scenarios for development of human activities

The detailed results are presented for the most likely development scenario for the extent of human activities in 2016-2030. In addition, three other development scenarios were estimated: no change, low change and high change scenarios. These scenarios cover 9 out of the 31 activities in the SOM analysis. The extent of other activities is assumed to remain constant in all scenarios.

As activities contribute to pressure inputs, their assumed change over time affects the pressure input reductions and probability to achieve GES or state improvements. The impact depends on to what extent the activities contributing to the specific pressure input are covered in the change scenarios. The coverage of activities that contribute to the input of noise differs between noise types, being high for continuous noise and very low for impulsive noise.

The impact of alternative development scenarios is significant for continuous noise. Compared to the results based on the most likely development scenario, assuming no change in human activities by 2030 results in low or very low projected reductions in the input of continuous noise, depending on the frequency and sub-area. In the low development scenario, projected pressure reductions are close to zero, and sometimes negative or positive depending on the sub-area. With the high development scenario, approximately 10% larger pressure increases are projected compared to the most likely development. Thus, the assumption on the changes in human activities drives the results on the projected pressure reductions for the input of continuous noise.

For impulsive noise, the impact of alternative scenarios to the projected pressure reductions is negligible for all sub-areas due to the low coverage of the activities contributing to its input in the development scenarios.

Evaluation of quality and confidence

The SOM analysis for underwater noise has evaluated the pressure reductions in the input of continuous and impulsive noise in 2016-2030, taking into consideration the effects of existing measures and changes in the extent of human activities by 2030. Proper sufficiency of measures analysis of quantification of the needed reduction of noise has not been possible due to a lack of GES threshold values. Main elements of the results have been presented in a quantitative format, as the data have been deemed to suffice for that.

The overall certainty of the assessment for noise could generally be characterized as low (impulsive noise) or moderate (continuous noise). The number of expert responses to the effectiveness of measures survey is comparatively moderate, and experts from six coastal countries have contributed to the assessment. Seven experts from five countries responded to the activity-pressure contribution survey. For the individual results, the average certainty ranges from low to high for the activity-pressure contributions, and from low to moderate for the effectiveness of measures types. The most common confidence level experts reported for their own evaluations for the effectiveness of measures is low or moderate.

The main factor causing uncertainty and potential inaccuracy in the results is the fact that the extent of the main activities contributing to the input of impulsive noise are assumed to remain constant until 2030, as no development scenarios have been made for them. This is a problem in particular with regard to marine and coastal construction, which could be expected to increase, as increases in both transport infrastructure and offshore windfarms are projected in the most likely scenario. These increases are high for offshore windfarms. Thus, ability to account for the changes in marine and coastal construction by 2030 would result in lower (or potentially negative) projected pressure reductions for impulsive noise. The situation is different for continuous noise, as the main activities contributing to its input are covered in the development scenarios. The accuracy of the results for impulsive noise could be improved by literature-backed up development scenarios for the main activities.

There were some technical challenges that affected the survey implementation. Firstly, there was a problem in the survey software for the effectiveness of measure types survey that resulted in losing some responses. The original responses became often unusable, as it was not possible to identify which items had been skipped on purpose and which were lost data. This issue was addressed by sending follow-up invitations for experts to review and, when needed, complement their original saved response. Not all experts participated in the review and those responses had to be deleted from the final sample, thus the final numbers presented above represent only those with completed and reviewed responses. Secondly, the simultaneous assessment of effectiveness of a measure type and certainty of that effectiveness proved in some cases difficult, as it required placing non-quantitative dots in a coordinate system to generate quantitative estimates. The dots were translated into effectiveness and certainty values between 0 and 100. Some experts would have preferred that the quantitative estimates would have been visible and could have been transparently influenced.

When interpreting the results, the assumptions and generalizations that were made when collecting the input data and defining and using the data on activity-pressure input contributions, measure type effectiveness and pressure-state linkages need to be taken into account. The input data are based mainly on expert elicitations rather than existing models and data and reflect substantial uncertainty. For more information on the SOM methodology, data collection and assumptions, see <u>this document</u>.

Reflection on measure types

Generally, the measure types for underwater noise appear to have struck a balance between specificity and general applicability, and as a whole do not show any systemic design flaws. However, there are concerns about the effectiveness assessments for the direct to pressure measure types (168 and 169, Table 4.4). The SOM approach was designed to allow these types of measures to exist, but they have only been used in the SOM noise assessment. The measure structure is correctly applied, but in the case of noise, where the separate issues of injury and disturbance have been combined into a single pressure, the topic structure masks the trade-offs implicit in these measure types. This is likely not solvable without separating the aspects of injury and disturbance, at least in the case of impulsive noise. The somewhat flawed implementation of these direct to pressure measure types is nevertheless a valuable learning opportunity for future development of measures affecting pressures directly, which are less common than measures affecting activities or state.

Lessons learned

Noise will be an interesting topic regarding future development. On one hand, compared to some other topics, noise topic experts were relatively comfortable working with the simplifications present in the SOM approach. On the other hand, further development of the topic seems tied to a much more detailed and technical approach, independently investigating some or all of the input and effects of intensity, frequency, disturbance, and injury. This is particularly clear in the case of the direct to pressure measure types discussed above and for the use of literature data in the model. The model was not able to incorporate any of the large number of literature data points because the data structure fundamentally conflicted with the SOM approach (effectiveness of measures estimates in terms of reductions hertz and decibels versus percent reduction in the input of noise). Some conversion might have been possible, but the non-linear nature of dB is particularly difficult to fit into the current SOM approach. Targeted development of this topic with the deep involvement of topic experts will be required for future improvements.

The most important activities for impulsive noise currently lack human development scenarios and the data required to create such scenarios may not be readily available. Unfortunately, this topic is likely to see large increases in human impact in the future. Future improvement in human development scenarios should include consideration of ways to approximate changes in coastal construction, military activity, and research and survey activities.

Use of results, implications and future perspectives

It is worth noting that some of the SOM noise results should not be used in place of a literature backed cost-benefit analysis or environmental impact assessment, due in part due to the simplifications of using a single metric of percent reduction in place of the interacting metrics of decibels and hertz and the combination of noise injury and disturbance into the single pressure of impulsive noise.

References

Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G.B., Thompson, P.M. 2010. Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Marine Pollution Bulletin 60:888-897.

HELCOM 2020a. Draft HELCOM regional action plan on underwater noise.7-8.12.2020, Heads of Delegation HOD 59-2020.

HELCOM 2020b. HELCOM Activities Report 2020. 7-8.12.2020, Heads of Delegation HOD 59-2020.

HELCOM 2019. Noise sensitivity of animals in the Baltic Sea. Baltic Sea Environment Proceedings 167.

ISO 1996-1:2016 Acoustics -- Description, measurement and assessment of environmental noise -- Part 1: Basic quantities and assessment procedures.

Kyhn, L. A., Wisniewska, D. M., Beedholm, K., Tougaard, J., Simon, M., Mosbech, A. and Madsen, P. T. 2019. Basin-wide contributions to the underwater soundscape by multiple seismic surveys with implications for marine mammals in Baffin Bay, Greenland. Marine Pollution Bulletin 138:474-490.

Richardson, W.J., Greene, C.R.Jr., Malme, C.I., Thomson, D.H. 1995. Marine mammals and noise. Academic Press, New York.

SOM report series

HELCOM ACTION 2021a. Sufficiency of existing measures to achieve good status in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MainSOMReport</u>

HELCOM ACTION 2021b. Methodology for the sufficiency of measures analysis. Available at: http://www.helcom.fi/SOM/MethodologyReport

HELCOM ACTION 2021c. A practical guide to interpreting the SOM results. Available at: <u>http://www.helcom.fi/SOM/PracticalGuide</u>

HELCOM ACTION 2021d. Sufficiency of existing measures for benthic habitats in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/BenthicHabitatsReport</u>

HELCOM ACTION 2021e. Sufficiency of existing measures for coastal fish in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/CoastalFishReport</u>

HELCOM ACTION 2021f. Sufficiency of existing measures for commercial fish in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/CommercialFishReport</u>

HELCOM ACTION 2021g. Sufficiency of existing measures for hazardous substances in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/HazardousSubstancesReport</u>

HELCOM ACTION 2021h. Sufficiency of existing measures for input of nutrients in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/NutrientsReport</u>

HELCOM ACTION 2021i. Sufficiency of existing measures for marine litter in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MarineLitterReport</u>

HELCOM ACTION 2021j. Sufficiency of existing measures for marine mammals in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MarineMammalsReport</u>

HELCOM ACTION 2021k. Sufficiency of existing measures for migratory fish in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MigratoryFishReport</u>

HELCOM ACTION 2021I. Sufficiency of existing measures for non-indigenous species in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/NISReport</u>

HELCOM ACTION 2021m. Sufficiency of existing measures for underwater noise in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/UnderwaterNoiseReport</u>

HELCOM ACTION 2021n. Sufficiency of existing measures for waterbirds in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/WaterbirdsReport</u>

HELCOM ACTION 20210. Sufficiency and cost-effectiveness of potential new measures to achieve good status in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/CostEffectivenessReport</u>

Model code is available at: https://github.com/LiisaSaikkonen/ACTION_SOM

Annexes

Annexes 1–9 contain the expert surveys as well as information on the measure types and the literature review. They are available on the <u>SOM Platform workspace</u>.

Annexes 10–11 contain graphs and tables that provide additional information and perspectives on the results.

Annex 1 Activity-pressure survey

Excel used as a template for receiving data for the activity-pressure input survey.

Annex 2 Modified activity list (if modified)

Excel containing the modified human activities list use for Underwater noise.

Annex 3 Measure types list

PDF containing the measure types used in the assessment of the effectiveness of measures for *Underwater noise*. Document includes examples of existing measures that if implemented would be included in the corresponding measure type.

Annex 4 Linking existing measures to measure types

Excel containing the identified existing measures and their relationship to the measure types used in the SOM analysis.

Annex 5 Literature review search terms

Excel containing the search terms used during the literature review on effectiveness of measures for *Underwater noise*.

Annex 6 Literature review summary

Excel document containing the effectiveness of measures data retrieved from the literature review.

Annex 7 Topic structure

Excel containing the relationships between measure types, activities, pressure inputs, state components, and sub-basins.

Annex 8 Effectiveness of measures survey PDF of the Effectiveness of measures survey for *Underwater noise*.

Annex 9 Pressure-state survey No state assessment was conducted for *Underwater noise*, so no pressure-state survey is available.

Annex 10 Supplementary results for effectiveness of measures

Table A1. Distribution of the effectiveness of measure types in controlling the pressure potential *input of continuous noise 63/125 Hz*. The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.

Input of continuous noise 63/125 Hz
Transport – shipping (incl. anchoring, mooring)
154: Spatial/temporal restrictions for sensitive areas and species
155: Speed limits in sensitive areas or times
151: Implementation of restrictions/permitting based on ship noise classifications
150: Promotion of alternative/low noise technologies
157: Improve awareness of ship owners/companies about noise input, effects, and avoidance
156: Raise consumer awareness about noise input and effects
153: Optimized scheduling to reduce time spent at anchorage sites
152: Use of shore-based power while in port

Pressure:	Input of continuous noise 63/125 Hz
Activity:	Fish and shellfish harvesting (all gears; professional, recreational)
Measure type:	154: Spatial/temporal restrictions for sensitive areas and species
	150: Promotion of alternative/low noise technologies
	151: Implementation of restrictions/permitting based on ship noise classifications
	155: Speed limits in sensitive areas or times
	157: Improve awareness of ship owners/companies about noise input, effects, and avoidance

Expert assessment: 7 experts, confidence = moderate

Pressure:	Input of continuous noise 63/125 Hz
Activity: etc.)	Tourism and leisure activities (boating, beach use, water sports,
Measure type:	154: Spatial/temporal restrictions for sensitive areas and species
	155: Speed limits in sensitive areas or times
	158: Introduce engine noise standards
noise c	151: Implementation of restrictions/permitting based on ship lassifications
	150: Promotion of alternative/low noise technologies
	157: Improve awareness of ship owners/companies about noise input, effects, and avoidance
Expert assessment:	7 experts, confidence = moderate

Pressure:	Input of continuous noise 63/125 Hz
Activity:	Extraction of minerals (rock, metal ores, gravel, sand, shell)
Measure type:	150: Promotion of alternative/low noise technologies
Expert assessment:	7 experts, confidence = moderate-low

Pressure:	Input of continuous noise 63/125 Hz
Activity:	Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
Measure type:	150: Promotion of alternative/low noise technologies
Expert assessment:	7 experts, confidence = low

Pressure:	Input of continuous noise 63/125 Hz
Activity:	Marine and coastal construction
Measure type:	150: Promotion of alternative/low noise technologies
Expert assessment:	7 experts, confidence = moderate-low

Table A2. Distribution of the effectiveness of measure types in controlling the pressure potential *input of continuous noise 2 kHz*. The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.

Pressure:	Input of continuous noise 2 kHz
Activity:	Transport – shipping (incl. anchoring, mooring)
Measure type:	154: Spatial/temporal restrictions for sensitive areas and species
	150: Promotion of alternative/low noise technologies
	155: Speed limits in sensitive areas or times
	151: Implementation of restrictions/permitting based on ship noise classifications
	157: Improve awareness of ship owners/companies about noise input, effects, and avoidance
	156: Raise consumer awareness about noise input and effects
	153: Optimized scheduling to reduce time spent at anchorage sites
	152: Use of shore-based power while in port
Expert assessment:	6 experts, confidence = moderate

Pressure:	Input of continuous noise 2 kHz
-----------	---------------------------------

Activity: Fish and shellfish harvesting (all gears; professional, recreational)

Measure type: 154: Spatial/temporal restrictions for sensitive areas and species

151: Implementation of restrictions/permitting based on ship noise classifications

150: Promotion of alternative/low noise technologies

155: Speed limits in sensitive areas or times

157: Improve awareness of ship owners/companies about noise input, effects, and avoidance

Expert assessment: 5 experts, confidence = moderate

Pressure:	Input of continuous noise 2 kHz
Activity: etc.)	Tourism and leisure activities (boating, beach use, water sports,
Measure type:	155: Speed limits in sensitive areas or times
	154: Spatial/temporal restrictions for sensitive areas and species
	151: Implementation of restrictions/permitting based on ship noise classifications
	158: Introduce engine noise standards
	150: Promotion of alternative/low noise technologies
	157: Improve awareness of ship owners/companies about noise input, effects, and avoidance
Expert assessment:	5 experts, confidence = high

Pressure:	Input of continuous noise 2 kHz
Activity:	Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
Measure type:	150: Promotion of alternative/low noise technologies
Expert assessment:	7 experts, confidence = low
	3.0% 150 2.0% 1.0%

20 40

Pressure:	Input of continuous noise 2 kHz
Activity:	Extraction of minerals (rock, metal ores, gravel, sand, shell)
Measure type:	150: Promotion of alternative/low noise technologies
Expert assessment:	7 experts, confidence = moderate-low

Table A3. Distribution of the effectiveness of measure types in controlling the pressure potential *input of impulsive noise with peak energy below 10 kHz*. The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.

Pressure:	Input of impulsive noise with peak energy below 10 kHz
Activity:	Marine and coastal construction
Measure type:	154: Spatial/temporal restrictions for sensitive areas and species
	161: Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)
	160: Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications
	159: Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction
	163: Optimized scheduling (max intensity vs duration)
	162: Inclusion of noise impact risks for sensitive species in EIAs
Expert assessment:	5 experts, confidence = high

Pressure:	Input of impulsive noise with peak energy below 10 kHz
Activity: surveys)	Research, survey and educational activities (seismic surveys, fish
Measure type:	154: Spatial/temporal restrictions for sensitive areas and species
	164: Mandatory noise monitoring and noise restrictions
	150: Promotion of alternative/low noise technologies
	160: Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications
	162: Inclusion of noise impact risks for sensitive species in EIAs
Expert assessment:	7 experts, confidence = moderate

Pressure:	Input of impulsive noise with peak energy below 10 kHz
Activity:	Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
Measure type:	154: Spatial/temporal restrictions for sensitive areas and species
	164: Mandatory noise monitoring and noise restrictions
	150: Promotion of alternative/low noise technologies
	160: Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications
	162: Inclusion of noise impact risks for sensitive species in EIAs
Expert assessment:	7 experts, confidence = high

Pressure:	Input of impulsive noise with peak energy below 10 kHz
Activity:	Military operations (infrastructure, munitions disposal)
Measure type:	150: Promotion of alternative/low noise technologies
	165: Spatial/temporal restrictions of testing, training, and exercises for sensitive areas and species
	167: Best environmental practices for UXO disposal
	166: Best practice for ship shock trials
Expert assessment:	6 experts, confidence = moderate

Table A4. Distribution of the effectiveness of measure types in controlling the pressure potential *from direct impulsive noise*. The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.

Pressure:	Direct to impulsive noise pressure (porpoises)
Activity:	Direct to pressure
Measure type:	168: Use of acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)
	169: Optimized use and specifications for acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)
Expert assessment:	5-6 experts, confidence = moderate
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Pressure:	Direct to impulsive noise pressure (seals)
Activity:	Direct to pressure
Measure type:	168: Use of acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)
	169: Optimized use and specifications for acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)
Expert assessment:	6 experts, confidence = moderate

Annex 11 Impacts of measure types

Table A5. Impacts of measure types (%) in reducing the input of underwater noise. The impact shows how much the measure type reduces the pressure input across all activities contributing to the pressure input.

Pressure for noise	Measure type	Mean (Standard
(geographic area)		deviation)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	37 (14)
noise 63/125 Hz	Speed limits in sensitive areas or times	28 (10)
(Central Baltic)	Implementation of restrictions/permitting based on ship noise classifications	27 (10)
(,	Promotion of alternative/low noise technologies	26 (15)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	20 (10)
	Raise consumer awareness about noise input and effects	13 (9)
	Optimized scheduling to reduce time spent at anchorage sites	11 (8)
	Use of shore-based power while in port	9 (8)
	Introduce engine noise standards	1 (1)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	37 (14)
noise 63/125 Hz	Speed limits in sensitive areas or times	29 (10)
(Culf of Finland)	Implementation of restrictions/permitting based on ship noise classifications	28 (10)
(Guij Oj Filliuliu)	Promotion of alternative/low noise technologies	26 (15)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	20 (10)
	Raise consumer awareness about noise input and effects	13 (9)
	Optimized scheduling to reduce time spent at anchorage sites	11 (7)
	Use of shore-based power while in port	9 (8)
	Introduce engine noise standards	1 (1)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	31 (9)
noise 63/125 Hz	Speed limits in sensitive areas or times	24 (6)
(Culf of Pigg)	Implementation of restrictions/permitting based on ship noise classifications	23 (7)
(Guij Oj Rigu)	Promotion of alternative/low noise technologies	22 (10)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	17 (7)
	Raise consumer awareness about noise input and effects	8 (6)
	Optimized scheduling to reduce time spent at anchorage sites	6 (4)
	Introduce engine noise standards	6 (2)
	Use of shore-based power while in port	5 (4)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	37 (15)
noise 63/125 Hz	Speed limits in sensitive areas or times	28 (10)
(Western Baltic)	Implementation of restrictions/permitting based on ship noise classifications	27 (10)
	Promotion of alternative/low noise technologies	25 (15)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	20 (10)
	Raise consumer awareness about noise input and effects	13 (10)
	Optimized scheduling to reduce time spent at anchorage sites	11 (7)
	Use of shore-based power while in port	9 (8)

Pressure for noise	Measure type	Mean (Standard
(geographic area)		deviation)
	Introduce engine noise standards	1 (1)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	35 (14)
noise 63/125 Hz	Speed limits in sensitive areas or times	28 (9)
(Gulf of Bothnia)	Implementation of restrictions/permitting based on ship noise classifications	27 (10)
(00) 0) 2000000	Promotion of alternative/low noise technologies	24 (14)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	19 (9)
	Raise consumer awareness about noise input and effects	12 (9)
	Optimized scheduling to reduce time spent at anchorage sites	10 (7)
	Use of shore-based power while in port	8 (7)
	Introduce engine noise standards	4 (4)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	27 (14)
noise 2 kHz	Promotion of alternative/low noise technologies	25 (17)
(Control Daltis)	Implementation of restrictions/permitting based on ship noise classifications	23 (14)
(Central Baltic)	Speed limits in sensitive areas or times	22 (13)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	17 (11)
	Raise consumer awareness about noise input and effects	8 (8)
	Optimized scheduling to reduce time spent at anchorage sites	8 (8)
	Use of shore-based power while in port	7 (10)
	Introduce engine noise standards	3 (2)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	29 (15)
noise 2 kHz	Promotion of alternative/low noise technologies	27 (18)
	Speed limits in sensitive areas or times	25 (13)
(Gulf of Finland)	Implementation of restrictions/permitting based on ship noise classifications	25 (15)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	19 (11)
	Raise consumer awareness about noise input and effects	9 (9)
	Optimized scheduling to reduce time spent at anchorage sites	9 (8)
	Use of shore-based power while in port	7 (10)
	Introduce engine noise standards	5 (3)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	29 (11)
noise 2 kHz	Promotion of alternative/low noise technologies	28 (14)
(Gulf of Riga)	Speed limits in sensitive areas or times	26 (10)
	Implementation of restrictions/permitting based on ship noise classifications	26 (11)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	20 (9)
	Introduce engine noise standards	12 (6)
	Raise consumer awareness about noise input and effects	6 (6)
	Optimized scheduling to reduce time spent at anchorage sites	6 (5)
	Use of shore-based power while in port	5 (7)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	27 (13)
noise 2 kHz	Promotion of alternative/low noise technologies	25 (16)
	Speed limits in sensitive areas or times	23 (12)
(Western Baltic)	Implementation of restrictions/permitting based on ship noise classifications	23 (13)

Pressure for noise	Measure type	Mean (Standard deviation)
(geographic area)	Improve awareness of ship owners/companies about noise input, effects, and avoidance	18 (10)
	Raise consumer awareness about noise input and effects	8 (8)
	Optimized scheduling to reduce time spent at anchorage sites	8 (7)
	Use of shore-based power while in port	6 (9)
	Introduce engine noise standards	5 (4)
Input of continuous	Spatial/temporal restrictions for sensitive areas and species	29 (16)
noise 2 kHz	Promotion of alternative/low noise technologies	27 (20)
(Gulf of Pothnia)	Speed limits in sensitive areas or times	25 (15)
(Guij Oj Botinnu)	Implementation of restrictions/permitting based on ship noise classifications	24 (16)
	Improve awareness of ship owners/companies about noise input, effects, and avoidance	19 (13)
	Raise consumer awareness about noise input and effects	10 (10)
	Optimized scheduling to reduce time spent at anchorage sites	10 (9)
	Use of shore-based power while in port	8 (11)
	Introduce engine noise standards	3 (4)
Input of impulsive	Promotion of alternative/low noise technologies	19 (13)
noise with peak	Spatial/temporal restrictions for sensitive areas and species	17 (10)
energy below 10 kHz	Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications	15 (10)
(Central Baltic)	Spatial/temporal restrictions of testing, training, and exercises for sensitive areas and species	10 (10)
	Inclusion of noise impact risks for sensitive species in EIAs	10 (8)
	Best environmental practices for UXO disposal	9 (10)
	Mandatory noise monitoring and noise restrictions	9 (8)
	Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)	7 (7)
	Best practice for ship shock trials	6 (8)
	Optimized scheduling (max intensity vs duration)	5 (6)
	Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction	5 (5)
Input of impulsive	Promotion of alternative/low noise technologies	31 (21)
noise with peak energy below 10 kHz	Spatial/temporal restrictions of testing, training, and exercises for sensitive areas and species	27 (17)
	Best environmental practices for UXO disposal	25 (18)
(Gulf of Finland)	Best practice for ship shock trials	16 (17)
	Spatial/temporal restrictions for sensitive areas and species	6 (4)
	Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications	5 (3)
	Inclusion of noise impact risks for sensitive species in EIAs	3 (2)
	Mandatory noise monitoring and noise restrictions	3 (2)
	Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)	2 (3)
	Optimized scheduling (max intensity vs duration)	2 (2)
	Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction	2 (2)
	Promotion of alternative/low noise technologies	27 (18)

Pressure for noise	Measure type	Mean (Standard
(geographic area)	Creatial /home and restrictions of testing training and eventions for consitius	deviation)
Input of impulsive noise with peak	areas and species	22 (14)
energy below 10	Best environmental practices for UXO disposal	21 (16)
kHz	Best practice for ship shock trials	14 (14)
(Gulf of Rigg)	Spatial/temporal restrictions for sensitive areas and species	7 (5)
	Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications	6 (4)
	Mandatory noise monitoring and noise restrictions	4 (3)
	Inclusion of noise impact risks for sensitive species in EIAs	4 (3)
	Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)	2 (3)
	Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction	2 (2)
	Optimized scheduling (max intensity vs duration)	2 (2)
Input of impulsive	Spatial/temporal restrictions for sensitive areas and species	18 (11)
noise with peak	Promotion of alternative/low noise technologies	17 (13)
energy below 10 kHz	Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications	15 (10)
(Mastern Baltia)	Inclusion of noise impact risks for sensitive species in EIAs	10 (8)
(Western Ballic)	Spatial/temporal restrictions of testing, training, and exercises for sensitive areas and species	10 (11)
	Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)	10 (9)
	Best environmental practices for UXO disposal	9 (11)
	Optimized scheduling (max intensity vs duration)	7 (8)
	Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction	7 (7)
	Mandatory noise monitoring and noise restrictions	7 (8)
	Best practice for ship shock trials	6 (9)
Input of impulsive	Spatial/temporal restrictions for sensitive areas and species	19 (14)
noise with peak	Promotion of alternative/low noise technologies	19 (13)
energy below 10 kHz	Regionally harmonized and intensified consideration of alternative/low noise technology in permit applications	16 (13)
(Culf of Dothair)	Mandatory noise monitoring and noise restrictions	15 (12)
(Guij of Bothnia)	Inclusion of noise impact risks for sensitive species in EIAs	10 (11)
	Spatial/temporal restrictions of testing, training, and exercises for sensitive areas and species	5 (5)
	Best environmental practices for UXO disposal	4 (5)
	Best practice for ship shock trials	3 (5)
	Technological noise mitigation measures (e.g. bubble curtains, coffer damns, etc.)	2 (3)
	Optimized scheduling (max intensity vs duration)	2 (2)
	Regionally harmonized and intensified noise monitoring and noise restrictions during marine and coastal construction	2 (2)
Direct to impulsive noise pressure – porpoise	Use of acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)	15 (13)
	Optimized use and specifications for acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)	11 (8)
(Baltic Sea)		

Pressure for noise (geographic area)	Measure type	Mean (Standard deviation)
Direct to impulsive noise pressure –	Optimized use and specifications for acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)	17 (14)
seals	Use of acoustic deterrence devices and measures (e.g. ramp up procedure, warning blasts, etc.)	17 (11)
(Baltic Sea)		