HELCOM ACTION

Sufficiency of existing measures for hazardous substances in the Baltic Sea

2021

Hazardous substances

JE HELCOM

This publication has been produced as part of the project "Actions to evaluate and identify effective measures to reach GES in the Baltic Sea marine region (HELCOM ACTION)". Running from January 2019 to December 2020, HELCOM ACTION is a Helsinki Commission (HELCOM) coordinated project that is co-funded by the European Union. The project is designed to contribute to the update of the HELCOM Baltic Sea Action Plan by 2021 and can also be used by HELCOM Contracting Parties that are also EU Member States in updating and implementing their MSFD Programme of Measures. Information and views expressed in this publication are the authors' own and might vary from those of the Helsinki Commission or its members.

helcom.fi/helcom-at-work/projects/action/

This publication is a deliverable of the HELCOM ACTION project's work package WP6 - Sufficiency of measures: developing an approach to assess the sufficiency of existing measures to achieve GES, implementing the approach for selected topics, identifying the need for new measures, estimating cost-effectiveness of tentative new measures

© Baltic Marine Environment Protection Commission – Helsinki Commission (2021)

All rights reserved. Information included in this publication or extracts thereof, with the exception of images and graphic elements that are not HELCOM ACTION's or HELCOM's own and identified as such, may be reproduced without prior consent on the condition that the complete reference of the publication is given as stated below.

For bibliographic purposes this document should be cited as: Sufficiency of existing measures for hazardous substances in the Baltic Sea. HELCOM ACTION (2021)

Contibutor(s): Heini Ahtiainen, Luke Dodd, Samuli Korpinen, Martin Larsen, Liisa Saikkonen, Emma Undeman, Sara Estlander, Leena Laamanen, Tin-Yu Lai, Kaius Oljemark, Tobias Porsbring, Jyri Tirroniemi, Emmi Vähä, Jana Wolf

Special thanks: SOM Platform, SOM HZ Topic Team, WG Pressure, EN Hazardous, Denmark, Sweden, HELCOM Contracting Parties

General information about the HELCOM ACTION project

EU programme concerned

Marine Strategy Framework Directive - Second Cycle: Implementation of the New GES Decision and Programmes of Measures

Reference number of the call for proposals DG ENV/MSFD 2018 call

Title of the project

Actions to evaluate and identify effective measures to reach GES in the Baltic Sea marine region (HELCOM ACTION)

Grant agreement number 110661/2018/794637/SUB/ENV.C2

Name of beneficiary of grant agreement

Baltic Marine Environment Commission – Helsinki Commission (HELCOM)

Official legal form

Intergovernmental Organisation

Official registration number Not applicable

Official address Katajanokanlaituri 6B, 00160 Helsinki, Finland

Name and title of the Project Coordinator Owen Rowe, Project Manager

Name of partners in the project and abbreviations used Finnish Environment Institute (SYKE)

Technical University of Denmark (DTU) Aarhus University (AU) Tallinn University (AU) Swedish Agency for Marine and Water Management (SwAM) Swedish University of Agricultural Sciences (SLU) University of Tartu, Estonia (UT) Klaipėda University, Marine Research Institute (KU)

Sub-contractors

Baltic Nest Institute (BNI), Sweden AKTiiVS, Latvia Bionautit, Finland

Start date and end date of the reporting period 01/01/2019 - 31/12/2020

Start date and end date of the project 01/01/2019 – 31/12/2020

Sufficiency of existing measures for hazardous substances in the Baltic Sea

Table of Contents

Summary of main results	3
Introduction	4
Report background	4
Topic background	5
Description of hazardous substances in the SOM assessment	6
Supplementary activities	8
Methods and data	9
Activity-pressure input contributions	9
Effectiveness of measures and pressure-state linkages	9
Pressure reductions and state improvements	10
Topic specific model structure, assumptions and challenges	10
Overview of data	11
Development of human activities	12
Results and interpretation	14
Background	14
Format of presentation	14
Coverage of pressures in the SOM analysis	15
Are existing measures sufficient for achieving good status?	16
What are the time lags between pressure and state?	18
What are the pressures contributing to the state components?	19
What are the state components most affected by hazardous substances?	21
What are the reductions in pressure inputs from existing measures?	22
How effective are measure types in reducing pressure inputs?	23
Which activities contribute to pressure inputs?	31
What are the impacts of measure types?	33
What are the impacts of existing measures?	33
Background of respondents	41
Discussion	43
Impact of alternative scenarios for development of human activities	43

Impact of using literature data on effectiveness of measures	43
Evaluation of quality and confidence	44
Reflection on measure types	45
Lessons learned	46
Use of results, implications and future perspectives	46
References	48
SOM report series	49
Annexes	51
Annex 1 Activity-pressure input survey template	51
Annex 2 Modified activity list (if modified)	51
Annex 3 Measure types list	51
Annex 4 Linking existing measures to measure types	51
Annex 5 Literature review search terms	51
Annex 6 Literature review summary	51
Annex 7 Topic structure	51
Annex 8 Effectiveness of measures survey	51
Annex 9 Pressure-state survey	51
Annex 10 Supplementary results for required pressure reductions	52
Annex 11 Supplementary results for effectiveness of measures	54
Annex 12 Impacts of measure types	

Summary of main results

This analysis has evaluated the sufficiency of existing measures in achieving GES for mercury, TBT, PFOS and diclofenac. These substances cannot be considered representative of all hazardous substances. Thus, the analysis does not cover the sufficiency of measures for the full range of hazardous substances (known and unknown) present in the Baltic Sea, and the results pertain only to the specific substances included in the analysis.

Existing measures do not appear sufficient in achieving GES for mercury, TBT, PFOS and diclofenac. Probability to achieve GES with existing measures is very low for mercury, TBT and diclofenac, and low for PFOS. The overall certainty of this assessment is moderate.

Total pressure reductions from existing measures are zero for TBT and diclofenac, and from low to moderate for mercury and PFOS. There is considerable uncertainty about the total pressure reductions required to achieve GES.

Main pressures contributing to the concentration of the substances are:

- Concentration of mercury: Heavy metal pollution; Change in hydrologic conditions
- Concentration of PFOS: Organohalogen pollution (e.g. PFOS, PCBs, PBDEs, dioxins); River, lake, or land habitat loss/degradation
- Concentration of TBT: Organotin pollution (e.g. TBT); Physical disturbance of marine habitats
- Concentration of diclofenac: Pharmaceutical pollution; Change in hydrologic conditions

Measure types having the most impact on the input of the substance are:

- Input of mercury: Local/state/national targets to eliminate coal fired energy production; Minamata convention; Paris agreement
- Input of PFOS: Clean-up of contaminated sites; Stockholm convention PFOS lists no accepted uses or exemptions; Restoration/upgrading of old landfill sites
- Input of TBT: Reduce re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations; Tighter allowed contamination levels during dredging activities; Implement technologies for the degradation of TBT from sediment (e.g. chemical oxidation, bioremediation)
- Input of diclofenac: Technical upgrade of wastewater treatment plants: e.g. granular activated carbon (GAC) adsorption, ozonation, UV light, nanofiltration etc.; Alter prescription practices to lower consumption (drug dosage, pack size, alternative medicine, convert OTC access to prescription)

Main activities contributing to the input of the substance are:

- Input of mercury: activities and sources outside the Baltic Sea Region; non-renewable energy generation; industrial uses
- Input of PFOS: solid waste; waste waters; activities and sources outside the Baltic Sea Region
- Input of TBT: solid waste; restructuring of seabed morphology
- Input of diclofenac: waste waters; solid waste

The overall certainty of the assessment for hazardous substances could generally be characterized as moderate. The number of expert responses is relatively high, and experts from eight coastal countries have contributed to some part of the assessment.

Introduction

Report background

The sufficiency of measures (SOM) analysis assesses improvements in environmental state and reduction of pressures that can be achieved with existing measures in the Baltic Sea region, and whether these are sufficient to achieve good environmental status (GES). The analysis involves estimating the state of the marine environment in 2030, based on a starting point of 2016 (i.e. the latest HELCOM status assessment), and given measures in existing policies, their implementation status, and the projected development of human activities over time. The evaluation can be carried out compared to relevant and agreed HELCOM threshold values for GES, where available.

The main aim of the SOM analysis is to support the update of the HELCOM Baltic Sea Action Plan (BSAP) by identifying potential gaps in achieving environmental objectives with existing measures for the Baltic Sea. In addition, the analysis can indicate both thematically and spatially where new measures are likely needed.

The same overall approach has been applied across all topics included in the SOM analysis to ensure comparability and coherence of the results, while considering topic-specific aspects and making necessary adjustments. The main components of the analysis include assessing the contribution of activities to pressures, the effect of existing measures on pressures, the effect of development of human activities on pressures, and the effect of changes in pressure on environmental state. The SOM approach, model and data collection are described in detail in the <u>methodology report</u>.

The methodology for the SOM analysis is designed to accommodate the broad array of topics relevant in the HELCOM region and to enable a region-level analysis. It balances between state-of-the-art knowledge, availability of data, and advice taken onboard from various HELCOM meetings and bodies.

The data used in the SOM analysis have been collected using expert elicitation and by reviewing existing literature, model outputs and other data sources. Data availability varies substantially across topics and data components, which is reflected in the presentation of the methods and results in this report.

The SOM analysis presents the first attempt to quantify the effects of existing measures and policies on the environment and achieving policy objectives for various environmental topics in HELCOM and the Baltic Sea area. It is aimed at assessing the overall sufficiency of existing measures at the Baltic Sea level. The results are based mainly on expert elicitation, and thus they should be utilized appropriately. Due to the pioneering nature of the approach and variable data quality and availability in the SOM analysis, the findings do not provide conclusive answers on the need for new measures, but indicate likely gaps, and should thus also be reviewed in relation to the results of other assessments.

This topic report describes the analyses carried out and the results for the SOM analysis on hazardous substances, providing detailed topic-specific information. First, it presents background information and describes the data and methods for addressing the topic in the SOM assessment, including relevant assumptions and challenges. Second, it presents and

discusses the findings for each result component. Third, it provides discussion on the impacts of alternative assumptions and data, evaluates the quality and confidence of the analysis, and provides implications and future perspectives. The annexes contain detailed information on the data components, topic structure and expert surveys for the analysis, as well as supplementary results.

Similar topic reports have been prepared for all nine topics covered in the SOM analysis. In addition, the results are summarized in the <u>main report</u> and the full methodology is described in the <u>methodology report</u>.

Topic background

The Baltic Sea is heavily polluted by hazardous substances originating from human activities (HELCOM, 2018f). Exposure of living organisms to excessive levels of toxic substances can lead to difficulties in their function, growth and reproduction, or even to death. This can in turn lead to loss of biodiversity, ecosystem functionality, and ecosystem services. Toxic substances that degrade slowly and accumulate within the food web are especially problematic since they remain in the environment for many years. Some compounds are well-known, but many are largely unstudied and only a small subset of the immense number produced are monitored (Sobek et al., 2016). Hazardous substances known to pollute the Baltic Sea belong to chemical classes or use categories such as organotins, organohalogens, heavy metals, pharmaceuticals, polycyclic aromatic hydrocarbons, and radioactive substances.

Organotins are tin-based compounds with hydrocarbon substituents, which have historically been used e.g. in antifouling paints and wood preservatives (Larsen, 2020). Tin is not itself generally particularly toxic, but with the organic functional groups, the toxicity can become very high. The well-known compound TBT is a known hormone disruptor causing e.g. sex abnormalities in oysters (imposex). The degradation rate of TBT is low, especially under anoxic conditions. Today, the use of TBT in antifouling paints and wood preservatives is forbidden in the EU, and there are ongoing efforts to phase out other organotins as well. TBT may however still be released from older paint layers on ship hulls, as well as, from contaminated sediments during activities such as dredging.

Organohalogens are organic compounds that contain at least one halogen (e.g. fluorine, chlorine, bromine) bonded to carbon. One example is per- and polyfluorinated alkyl substances (PFAS), which are commonly used in textiles, fire-fighting foam, hydraulic oil, and ski waxes (Johansson and Undeman, 2020). Since many PFAS are very persistent, bioaccumulative and toxic (Blom and Hansen, 2015), there are ongoing efforts to phase out the production and use, as outlined by the Stockholm Convention (Johansson and Undeman, 2020). The use of perfluorooctane sulfonate (PFOS), the PFAS that historically has been produced in the highest quantity, is specifically restricted. However, the reduction of PFOS use has led to increased use of other PFAS, which seem to have similar properties.

Heavy metals occur naturally in all environmental compartments, but concentrations have increased due to human activity (HELCOM, 2018g). The heavy metal assessed in this analysis is mercury, a toxic, persistent pollutant that in its methylated form biomagnifies through food webs (WHO, 2008). The main inputs of mercury to the Baltic Sea is through atmospheric deposition and via rivers (HELCOM, 2018g). Over the years, there have been many efforts to

minimize mercury use within the HELCOM region and the EU and further measures are outlined in the Minamata convention, which is implemented 2020 (Larsen, 2020).

Pharmaceuticals are useful chemicals for treatment of diseases but can also cause harm once released in the environment. They enter the Baltic Sea mainly due to poor removal in wastewater treatment plants, due to improper disposal of unused medicines down the drain, or potentially via veterinary use (UNESCO & HELCOM 2017). One of the most monitored and detected pharmaceuticals worldwide is the anti-inflammatory drug diclofenac, which has also been detected at several locations in the Baltic Sea (Undeman, 2020).

Other hazardous substances effecting the Baltic Sea environment include hydrocarbons and radioactive substances. Oil spills, combustion of fossil fuels, and waste incineration are sources of polycyclic aromatic hydrocarbons (PAHs) in the Baltic Sea (HELCOM, 2018h). These compounds are toxic and accumulate in aquatic organisms, particularly invertebrates. PAHs associate with particles in the water and accumulate in sediments where they can persist for a long time, especially in anaerobic sediments (HELCOM, 2018h). After the accident at the Chernobyl nuclear power plant in 1986, the radionuclide cesium-137 (137Cs) was deposited over the Baltic Sea and has accumulated in marine biota and sediments (HELCOM, 2018i). The level of 137Cs is still higher than in any other ocean but is expected to decline below the threshold for good status in the Baltic Sea (pre-Chernobyl levels) in the coming few years since new inputs are low (HELCOM, 2018i).

Description of hazardous substances in the SOM assessment

Hazardous substances have been considered in a variety of ways in the SOM analysis. The primary focus is on the full analysis of four substances which are evaluated at each step of the SOM analysis. These substances are mercury, perfluorooctane sulphonate (PFOS), tributyltin (TBT), and diclofenac, which were selected to represent a variety of chemical attributes and management regimes. The input of these substances is tracked by the pressure inputs: *Input of mercury, Input of PFOS, Input of TBT, Input of diclofenac* (Figure 1), input being defined as new emissions to the environment or release/resuspension of loads otherwise removed from the system (e.g. dredging releasing buried TBT) caused by human activity. The concentrations of these substances are then tracked as the state components: *Concentration of mercury, Concentration of PFOS, Concentration of TBT, Concentration of diclofenac* (Figure 1). These state components reflect the evaluation carried out in the HELCOM indicators "Metals (lead, cadmium and mercury)", "Perfluorooctane sulphonate", "TBT and imposex", and "Diclofenac", as well as MSFD criteria D8C1¹. These

¹ Marine Strategy Framework Directive criteria D8C1 – Primary: Within coastal and territorial waters, the concentrations of contaminants do not exceed the following threshold values:

⁽a) for contaminants set out under point 1(a) of criteria elements, the values set in accordance with Directive 2000/60/EC;

⁽b) when contaminants under point (a) are measured in a matrix for which no value is set under Directive 2000/60/EC, the concentration of those contaminants in that matrix established by Member States through regional or subregional cooperation;

⁽c) for additional contaminants selected under point 1(b) of criteria elements, the concentrations for a specified matrix (water, sediment or biota) which may give rise to pollution effects. Member States shall establish these

components have established HELCOM GES threshold values (mercury, PFOS) or threshold values that were tested (TBT, diclofenac) and are evaluated only for their primary sampling matrices² (i.e., water, sediment, or biota) (HELCOM 2018b-e).



Figure 1. Schematic of the SOM analysis for the four analysed hazardous substances (mercury, PFOS, TBT, diclofenac). The pressure input (e.g. input of mercury) and the pressure (e.g. mercury pollution) relevant to each substance are assumed to be equivalent.

For mercury, the primary test matrix is fish muscle where the GES threshold value is set at 20 μ g/kg wet weight. In the latest HOLAS assessment period (2011-2016), mercury was in a not good status at the Baltic Sea scale; with good status achieved only in a few smaller scale areas (i.e., certain scale 4 assessment units) in the southwestern Baltic (HELCOM 2018a-b). The GES threshold value for PFOS is set at 9.1 μ g/kg fish muscle wet weight in the primary matrix fish muscle. In the latest HOLAS assessment period (2011-2016), PFOS was in a not good status at the Baltic Sea scale. However, this was the result of not good status in a single coastal area and consistent not good status in the secondary matrix of seawater, where sampled (HELCOM 2018a, 2018c). The SOM analysis only considers the status as assessed in the primary matrix and therefore there may be some discrepancies with the latest status assessment. For TBT, the primary matrix is sediment with a test threshold value of 1.6 μ g/kg dw sediment (5% TOC). In the latest HOLAS assessment period (2011-2016), TBT fails to achieve good status at both the Baltic scale and in all surveyed sub-areas (HELCOM 2018a, 2018a). Several secondary matrices exist, which also indicate widespread not good status.

concentrations through regional or subregional cooperation, considering their application within and beyond coastal and territorial waters.

Beyond territorial waters, the concentrations of contaminants do not exceed the following threshold values: (a) for contaminants selected under point 2(a) of criteria elements, the values as applicable within coastal and territorial waters;

⁽b) for contaminants selected under point 2(b) of criteria elements, the concentrations for a specified matrix (water, sediment or biota) which may give rise to pollution effects. Member States shall establish these concentrations through regional or subregional cooperation.

² Diclofenac is tested in both seawater and biota but neither matrix has been designated as the primary testing matrix. For the SOM analysis, seawater is used due to the better geographic coverage of samples.

The test threshold for diclofenac is 0.005 μ g/l sea water. Diclofenac is also tested in biota and neither matrix has been designated as the primary testing matrix. For the SOM analysis, seawater is used due to the better geographic coverage of samples. In the latest HOLAS assessment period (2011-2016), diclofenac was not fully quantitatively assessed (HELCOM 2018a). However, concentrations failing to reach good state are generally restricted to within 10 km of wastewater treatment plant outlets. An optimal monitoring program and indicator framework is still under development (HELCOM 2018e).

Hazardous substances are also considered in the SOM analysis as more general pressures on the Baltic Sea environment. Six general pollution pressures related to hazardous substances could be selected when identifying the most significant pressures linked to any of the state components included in the SOM analysis: *Heavy metal pollution, Organohalogen pollution, Organotin pollution, Pharmaceutical pollution, Hydrocarbon pollution, Radioactive pollution* (Figure 1). These pressures are more broadly defined than the HELCOM indicators but do correspond with the MSFD criteria D8C1¹. These pressures are included in the SOM analysis to capture the overall effects of hazardous substances to the environment, to not limit the analysis to the four substances addressed in greater detail, and to accommodate the varying knowledge related to hazardous substances of experts in other fields, e.g. marine mammals, waterbirds, etc. Management and monitoring of hazardous substances require the substance specific approach taken for mercury, PFOS, TBT and diclofenac, but accounting for the overall impact of hazardous substances in the SOM model does not.

Supplementary activities

As supplemental information to the update of the BSAP and SOM analysis, background documents were prepared on each of the four target substances and their sources and pathways as part of the overall SOM work. Draft versions of the background documents on mercury and TBT were provided to experts responding to the activity-pressure survey. The remaining documents were prepared after the survey was implemented. Background documents were additionally prepared for PBDEs, dioxins and PCBs, as these are substance groups also currently impacting on status. These latter substance groups were not considered directly in the SOM model due to limited resources, but they do provide important insights into other hazardous substances of relevance to the region. Links to these all the background reports are available below.

- <u>Diclofenac</u>
- PFOS and other PFASs
- Dioxins and PCBs
- <u>PBDEs</u>
- Mercury
- <u>TBT</u>

Methods and data

The section below includes an overview of any topic-specific methodologies. A full description of the general approach, methods and data collection for the SOM analysis is available in <u>this document</u>. Note that the detailed results are presented for the most likely development of human activities and using the expert data on effectiveness of measures.

Activity-pressure input contributions

The contributions of activities to the input of each four substances were determined using surveys that were distributed to national topic experts via the HELCOM Expert Network on Hazardous Substances (EN-HZ). Responses from individual experts were accepted, but because national responses were preferred, all responses were weighted nationally to standardize the data set. The background documents on the target substances were provided as supplementary material to the experts to support their survey response. Respondents were asked to assess the maximum, minimum, and most likely contribution of any activity contributing more than 5% to the total input of each substance. Respondents were also asked to assess the extent to which data informed their answer using a five-point scale (1 being very low and 5 very high).

Effectiveness of measures and pressure-state linkages

Measure types (Annex 3) and structural relationships between the measure types and activities and pressure inputs (Annex 7) were designed by the HELCOM Workshop on the analysis of sufficiency of measures for hazardous substances (HELCOM SOM-HZ WS 1-2019) in collaboration with the Hazardous Substances Topic Team and HELCOM ACTION WP6. The measure types were informed by the existing measures list (Annex 4) but were also designed to acknowledge the full breadth of potential measures.

For hazardous substances, the effectiveness of measures survey structure comprised 37 unique measure types covering 11 activities. The same measure type may be listed under multiple activities and pressure inputs. Altogether this resulted in 45 assessments of measure type effectiveness across the four pressure inputs: *Input of mercury, Input of PFOS, Input of TBT,* and *Input of diclofenac*. The exact list of measure types, and their grouping by activities and pressure inputs is shown in Annex 7. The effectiveness of measures survey itself is included as Annex 8.

Effectiveness of the measure types and links between the pressures and state components were determined using online expert surveys implemented in December 2019 – February 2020 with follow-up surveys conducted in spring 2020. The expert pool contacted consisted of the HELCOM Expert Network on Hazardous Substances, the HELCOM Correspondent Group on Pharmaceuticals, and participants of the HELCOM Workshop on the analysis of sufficiency of measures for hazardous substances and nationally nominated experts. Additionally, the project received survey responses from experts not on the original invitation list, based on distribution of the request nationally, and these responses were also

included in the analysis. The full description of the methodology and data collection is available as part of the <u>SOM methodology report</u>.

Pressure reductions and state improvements

The projected reductions in pressure inputs are calculated using the data on activitypressure input contributions, effectiveness of measure types, links between existing measures and measure types, and projected development of human activities. They account for the joint impacts across the measure types, as well as the spatial area where the pressure inputs can be reduced to avoid overestimating the pressure input reductions. Pressure reductions can be positive (pressure is reduced), negative (pressure is increased) or zero (no change in pressure), depending on the combined effect of existing measures and changes in the extent of human activities. When the reduction in pressure inputs from existing measures is larger than the increase from changes in human activities, pressure inputs are reduced.

The sufficiency of measures assessment compares the state improvement from existing measures to the state improvement required to achieve GES. The calculation of sufficiency of measures takes into account all the components of the SOM analysis: the activity-pressure input contributions, effectiveness of measure types in reducing pressure inputs, links between existing measures and measure types, projected pressure input reductions from existing measures, development of human activities, significance of pressures to state components and pressure reductions required to achieve GES. The analysis assumes that all existing measures are fully implemented and that there are no time lags between the input of hazardous substances and their concentrations.

Topic specific model structure, assumptions and challenges

The SOM analysis for hazardous substances evaluates the sufficiency of measures in achieving GES, considering the effects of existing measures and future development of human activities. In the SOM model structure, the pressure inputs (i.e., *Input of mercury, Input of PFOS, Input of TBT, Input of diclofenac)* are assumed to be equivalent to the relevant pressures (i.e., *Heavy metal pollution, Organohalogen pollution, Organotin pollution, Pharmaceutical pollution*) for the analysis of each specific substances. In practice this means that e.g. *Heavy metal pollution is* considered to represent only mercury pollution for the assessment of the *Concentration of mercury and that the pressure input is equivalent to the pressure (Figure 1).* The assumption relies on e.g. mercury concentration not being affected by the input of other heavy metals. The assumption only requires absent or limited interactions between substances and not e.g. lack of co-release of substances. The assumption of independence, i.e. that mercury concentrations are not affected by other factors, is only applied in this part of the model to allow for the substance specific assessment of SOM, and this assumption does not apply in later stages where linkages between other state variables are carried out.

Existing concentrations of the target substances are not directly considered in the analysis. When assessing the required pressure reduction to reach good status, experts were provided links to assessments of current status and it is possible that expert responses regarding time lags likely considered current status as well. This approach could have difficulties with topics with long time lags, such as exists for several hazardous substances. The SOM model is static and thus is not ideal for capturing the complex temporal dynamics present in e.g. burial and resuspension. Use of a dynamic model would improve coverage of these aspects but would be too complex to currently implement.

This challenge also affects the ability for topic experts to provide an accurate required pressure reduction to reach GES. For a topic with significant time lags to recovery, concentrations would be expected to continue to fall for years or decades even if no additional steps were taken. When compiling the list of existing measures, countries were asked to include measures implemented prior to the base year (2016) that had time lags between measure implementation and pressure reduction that would indicate additional impact occurring after the start of the base year (2016 forward). This mechanism allows measure-pressure input time lags between pressure and state (time lags to recovery). The difficulty of correctly estimating the required pressure reduction to reach GES increases with substance time lags to recovery and in these cases more interpretive weight must be given to the estimated time lags.

Overview of data

Table 1 shows the origin and spatial resolution for the data components in the SOM analysis for hazardous substances. Activity-pressure input contributions, pressure-state links and time lags are based on expert data. Information on existing measures comes from literature reviews and Contracting Parties, and development of human activities is based on existing literature, data and projections.

Estimates of the effectiveness of measures were collected both via expert surveys and a literature review for all topics included in the SOM analysis. The aim of the literature review was to compile information from scientific articles and reports providing estimates on the effects of measures in reducing pressure inputs that could be used in the SOM analysis, either by including the estimates in the SOM model or by providing comparison points. The literature review was conducted by topic, with the information collected into structured excel files (see the <u>methodology document</u>, Annex 5 and Annex 6 for more information). For hazardous substances, 134 effectiveness estimates from 44 studies were compiled. Out of these, 71 estimates from 23 studies could be included in the model. Detailed results are presented using only the expert data, and the implications of using the literature data for the effectiveness of measures are reviewed in the discussion section. Scenarios for the Baltic Sea region, and pressure-state links were evaluated with expert elicitation.

The spatial resolution (level of detail) differs across the data components of the SOM analysis. All assessment areas are based on the 17 HELCOM scale 2 sub-basins and the assessment area ranges from the single Baltic Sea to individual sub-basins. However, for hazardous substances, all expert data are reported at the Baltic Sea scale, while data on existing measures and their implementation status exists at the sub-basin level. When the topic of hazardous substances interacts with other topics, e.g. birds, mammals and benthic

habitats, smaller spatial scales may be used to reflect spatial variation in those topics. Table 1 shows the origin and spatial resolution for the data components in the SOM analysis for hazardous substances.

Data component	Origin of data	Spatial resolution	
Activity-pressure input contributions	Expert evaluation	Whole Baltic Sea	
Existing measures	Literature review, Contracting Parties	17 sub-basins	
Effectiveness of measures	Expert evaluation, literature review	Whole Baltic Sea	
Development of human activities	Literature review, existing data and projections	Whole Baltic Sea	
Pressure-state links	Expert evaluation	Whole Baltic Sea	
Time lags	Expert evaluation	Whole Baltic Sea	

 Table 1. Data for hazardous substances (more information on data collection is available in the methodology document).

Development of human activities

In addition to existing measures, changes in the extent of human activities may affect pressure inputs over time. Four scenarios for future changes in human activities were developed: 1) no change, 2) low change, 3) moderate (most likely) change, and 4) high change. These alternative scenarios aim to capture uncertainties and variation in the future development of human activities. The results of the SOM analysis were estimated for each of the four scenarios to assess how the alternative assumptions on the development of human activities affects the findings. Detailed results are presented for the most likely development scenario, and implications of using the other scenarios on the results are reviewed in the discussion section.

The scenarios specify a percent change in each activity expected between 2016–2030 based on existing information and projections from the Baltic Sea region (see <u>methodology report</u> for details and references). Change scenarios were made only for predominant activities in the Baltic Sea region, including agriculture, forestry, waste waters, (commercial) fish and shellfish harvesting, aquaculture, renewable energy production, tourism and leisure activities, transport shipping and transport infrastructure. Other activities are assumed to stay unchanged. This means that only 9 of the 31 standard SOM activities have change scenarios in the SOM analysis. This results in varying influence of these scenarios on the results across topics, pressures and state components, depending on the significance of the activities to the pressure inputs relevant to the topic.

For hazardous substances, coverage of activities that contribute to pressure inputs in the change scenarios is very low for mercury (5%), low for PFOS (22%) and TBT (26%), and high for diclofenac (56%). Important activities contributing to the input of these substances that are lacking development scenarios include non-renewable energy generation (mercury), air transport (PFOS), industrial uses (mercury), solid waste (PFOS; diclofenac), restructuring of

seabed morphology (TBT), and activities and sources outside the Baltic Sea region (mercury). More information on the development scenarios and source materials is given in section 9 of the <u>methodology report</u>.

The current situation with COVID-19 and its possible implications on the development of human activities is not reflected in the scenarios, as there is currently no information on the long-term effects it may have on the economy or activities. The current situation poses a challenge for choosing the most likely scenarios for the development of human activities, which has been done based on currently available information.

Results and interpretation

Background

The SOM results are presented in the format of percent shares or probabilities. The main finding of the analysis is the probability to achieve GES or specific state improvements/pressure input reductions, taking into consideration the effects of existing measures and changes in the activities on pressure inputs. The contribution of activities to pressure inputs, the effect of measures on pressure inputs, and the significance of pressures to state components are presented as percent values (e.g. how many percent would the measure reduce the pressure input). Results are presented mainly in tables, which show the most likely (expected) values and standard deviations. Standard deviation is a way of showing the variation in the values. When it is high, values are spread over a wider range, and when it is low, values are closer to the most likely value. Figures and graphs presenting distributions are included in the annexes. They show the same results as the tables but allow either more detailed information or alternative visualisation of the results.

For the data that are based on expert surveys, the confidence rating gives the most common answer to experts' assessment of the confidence in their own survey responses on a low-moderate-high scale. More detailed information on how each result has been calculated is presented in the <u>methodology document</u>.

This document presents the detailed results based on the expert-based data (survey responses). Literature data on the effectiveness of measures has been collected and included in an alternative model estimation. The impacts of using the literature data are evaluated in the discussion section. In the detailed results, the projected development of human activities is based on the most likely future development until 2030 (for details, see the <u>methodology document</u>), and the impacts of alternative scenarios on human activities are examined in the discussion section.

Format of presentation

The format the results are reported in different ways (not presented, qualitative/semiquantitative, quantitative) depending on the type of result and the number of participating experts. Further, for all results utilizing other SOM results as input data, reporting is done at the most conservative standard used in the input data. In practice this means that if one input data point is reported as 'insufficient data', all results using that data point will also be reported as 'insufficient data'; similarly for qualitative/semi-quantitative data points. However, note that this standard is only applied in the case of data points actively used to calculate another result. For example, many measure types are hypothetical or otherwise not implemented in the Baltic Sea and therefore do not factor into results on projected pressure input reductions from existing measures. Insufficient data for such measure types does not affect reporting other results that rely on data for effectiveness of measure types. Results that do not meet the data standards described here and in greater detail below are marked with 'insufficient data' in the report. All the data components for hazardous substances meet the thresholds for fully quantitative presentation. For results concerning required pressure reductions and significance of pressures to state components, results with 2 or fewer respondents are not reported; results with 3 to 4 respondents will be either not reported, or qualitatively/semi-quantitatively reported based on feedback from the SOM topic teams or other HELCOM expert body; results with 5 or more respondents are reported quantitatively. This standard allows flexibility for reporting on assessments that are of spatially limited areas and therefore have fewer experts available to survey, while also being somewhat conservative in reporting fully quantitative results.

For expert-based effectiveness of measures results, measure types with 5 or more respondents are reported quantitatively and those with 4 or fewer respondents are listed as having insufficient data.

For expert-based activity-pressure input results, expert responses where primarily sought through the HELCOM expert networks in the form of national responses. Individual expert responses were accepted but were consolidated into average responses by country to conform to the format of other responses. Thus, the maximum number of responses is 9. This maximum is rarely reached due to responses typically only applying to areas adjacent to the specific country. Acknowledging this, activity-pressure input relationships are reported if there are expert responses from 3 or more countries or if the number of countries providing expert responses is greater than 1/2 the number of countries bordering any given sub-area (see Table 2 below; responses from experts based in any HELCOM country will be counted toward the reporting threshold, i.e. the reporting assessment is not limited to responses from bordering countries).

Table 2. Required number of countries providing expert responses to the activity-pressure input survey to
meet the minimum data threshold for reporting.

Bordering countries	Required number of countries providing expert responses to meet minimum data threshold	Example areas
1	1	Western Gotland Basin
2	2	Bothnian Sea, Gulf of Riga
3	2	Gulf of Finland
4+	3	Eastern Gotland Basin, Baltic Sea

Coverage of pressures in the SOM analysis

The SOM analysis has only been able to account for a portion of all pressures that affect the state components, and the effect of several significant pressures have not been included due to not being able to quantify the link between the pressure inputs, pressures and state components in the analysis. This means that the effect of reductions in these excluded pressures on the state components is not included in the total pressure reductions, and the projected total pressure reductions and probability to achieve GES are underestimated. The share of pressures covered in the analysis has been calculated based on the significance of

pressures to the state component in question. The share varies across topics and state components from low (around 20%) to high (more than 80%).

Are existing measures sufficient for achieving good status?

Concentrations of mercury and PFOS have established HELCOM GES threshold values and concentrations of TBT and diclofenac are currently evaluated by applying preliminary GES threshold values. Thus, it is possible to assess whether existing measures are sufficient in achieving GES.

Overall, the results of the analysis indicate that existing measures are not sufficient in achieving GES for the concentrations of mercury, TBT, PFOS and diclofenac. Reductions in concentrations from existing measures are around 10-30% for mercury, around 5-30% for PFOS and close to zero for TBT and diclofenac (Table 3). Required pressure reductions to achieve GES are in the range of 20-85% for the different substances (Table 4), thus indicating considerable uncertainty about how much pressures need to be reduced to achieve GES. The probability to achieve GES with expected total pressure reductions is very low for mercury, TBT and diclofenac, and low for PFOS.

In the latest HOLAS assessment period (2011-2016), mercury was in a not good status at the Baltic Sea scale; with good status achieved only in a few smaller scale areas in the southwestern Baltic (HELCOM 2018a-b). PFOS was in a not good status at the Baltic Sea scale, however, this was the result of not good status in a single coastal area and consistent not good status in the secondary matrix of seawater, where sampled (HELCOM 2018a, 2018c). TBT failed to achieve good status at both the Baltic scale and in all surveyed sub-areas (HELCOM 2018a, 2018d). Diclofenac was not quantitatively assessed (HELCOM 2018a).

The near zero projections of the probability of achieving GES for TBT and diclofenac are due to few or no existing measures to control their inputs (or release from historic deposits), and aspects such as natural processes (e.g. sediment burial and retention) are not explicitly included in this evaluation. The result from PFOS is unexpected due to widespread good status of PFOS through the Baltic Sea during the 2011-2016 assessment period (37/38 areas in good state; HELCOM 2018c) and strong control of the substance under the Stockholm Convention on Persistent Organic Pollutants. This could potentially be a result of experts evaluating the state of PFOS for all sampling matrices (i.e. including water where the threshold values were not achieved in some scale 4 assessment units) rather than for the primary matrix of fish muscle. However, it may also reflect the fact that the substance remains of concern since significant concentrations of it are contained in materials still in circulation and without proper disposal concentrations may increase. Additionally, expert responses may also reflect the fact that PFOS as assessed by the existing HELCOM indicator only addresses a limited selection of substances of potential concern withing the larger and closely related PFAS group.

In the case of mercury, TBT, PFOS and diclofenac, the SOM analysis has been able to account for 61-85% of the pressures linked to the substances (pressures highlighted in white in Table 6. This percent reflects the share of pressures that 1) have a quantifiable link to the concentrations of the four substances and 2) have measure types that affect them in the SOM analysis. It has been calculated based on the significance of pressures to the concentrations of the four substances. It is the maximum pressure reduction that could be achieved if the pressures linked to the concentration of the four substances in the SOM analysis were eliminated. The effects of several significant pressures are not included in this total, such as eutrophication and change in hydrologic conditions (pressures highlighted in grey in Table 6). Although these pressures are expected to decrease based on the results of the SOM analysis, the analysis is not able to estimate how this would affect the concentrations of hazardous substances. Thus, the total pressure reductions and probability to achieve GES are underestimated.

The sufficiency of measures result is presented as the probability of achieving GES with the projected total reduction in pressures by substance at the scale of the entire Baltic Sea. Table 3 shows the expected total pressure reductions from existing measures, the probability to achieve GES with such a pressure reduction, and the maximum pressure reduction that could be achieved with the fully quantified pressures in the SOM analysis. Total pressure reductions are calculated based on the reduction in the input of mercury, TBT, PFOS and diclofenac (Table 8), significance of different pressures to the concentrations of these substances (Table 6), and spatial weighting to account for the target area of existing measures.

Table 4 shows the average of the mostly likely total pressure reduction required to reach GES for each substance, based on the expert responses. There is considerable uncertainty among experts about the required pressure reductions to achieve GES, as the standard deviations are high compared to the most likely value. The required pressure reductions are 60-75% for mercury, 35-75% for TBT, 35-65% for PFOS and 30-60% for diclofenac, based on the 90% confidence intervals. This indicates that substantial pressure reductions would be required to achieve GES, but their magnitude is very uncertain. The experts' confidence in their own estimates is moderate.

Distributions of expert responses on the required pressure reductions to achieve GES are included in Annex 10. Experts have differing opinions and there is substantial uncertainty about the pressure reductions required to achieve GES. For example, in the case of mercury, experts seem to agree that pressure reductions that are lower than 40% would not be sufficient to achieve GES but have varying views on the size of the pressure reductions needed. Thus, there is considerable uncertainty about the link between pressure reductions and achieving GES for these four hazardous substances.

Table 3. Sufficiency of measures in achieving GES for concentrations of mercury, TBT, PFOS and diclofenac in the Baltic Sea. The table presents the expected values and the 10-90 percentile in brackets, which shows the range in which 80% of the observations fall in.

State	Assessment area	Total pressure reduction (%) [10 percentile – 90 percentile]	Probability to achieve GES (%) with expected pressure reduction [10 percentile – 90 percentile]	Maximum possible pressure reduction due to model coverage (%)
Mercury concentration	Baltic Sea	20 [10 - 29]	0 [0-0]	56
TBT concentration	Baltic Sea	-1 [-12 - 7]	0 [0-0]	69
PFOS concentration	Baltic Sea	16 [7 - 27]	13 [1 - 13]	68
Diclofenac concentration	Baltic Sea	0 [-3 - 2]	0 [0 - 1]	85

Data used: expert estimates of activity-pressure input contributions, expert estimates of effectiveness of measure types, information on existing measures, expert estimates of significance of pressures to state components, expert estimates of required pressure reductions to achieve GES, projections and literature on development of human activities

Table 4. Total pressure reduction required to reach GES. Standard deviation is given in parentheses. Values are calculated directly from expert survey data. Confidence depicts the most common rating of expert's confidence in their own responses to the question on total pressure reduction required to reach GES.

State	Mercury concentration	TBT concentration	PFOS concentration	Diclofenac concentration
Most likely	69	55	51	46
pressure reduction required (%)	(15) •••	(27) ०●●	(21) ○●●	(24) ○●●
Confidence	Moderate	Moderate	Moderate	Moderate
Number of experts	11	8	8	11

Colour scale for the percent reduction in pressures required to reach GES in percent (based on the expected value):

<mark>0-10%</mark>, <mark>10-20%</mark>, <mark>20-40%</mark>, <mark>40-60%</mark>, 60-100%

Categories for the certainty of the reduction required estimate (based on the relative size of the standard deviation to the expected value): low: $\circ \circ \bullet$, moderate: $\circ \bullet \bullet$, high: $\bullet \bullet \bullet$

Data used: expert estimates of required pressure reductions to achieve GES

What are the time lags between pressure and state?

Information on time lags between reducing the pressure inputs and concentrations was collected from experts, who evaluated how long it would take to achieve GES assuming sufficient measures were implemented. Table 5 shows the distribution and average of the answers for the four substances.

The likely time lag for mercury is considered to be the longest out of the substances, with an average of 38 years. Achieving GES for TBT and PFOS with sufficient measures is evaluated to take on average 14 and 17 years, respectively, while time lag for diclofenac is considerably smaller, on average 5 years. These expert evaluations indicate that even with sufficient measures, it takes time to achieve GES concentrations in the Baltic Sea for the selected (and likely other) hazardous substances.

The main reported factors contributing to the time lag for mercury were high retention in sediments leading to long-term release into the Baltic Sea, slow burial rates, and that it is non-degradable. The primary reported factors for TBT were its long degradation time and local sedimentation rates. Degradation time and sedimentation rates were also reported for PFOS, in addition to the long residence time of water in the Baltic Sea. The primary reported factor influencing diclofenac was its degradation time.

Additional information on time lags related to hazardous substances has been produced in HELCOM ACTION project WP5.

Time lag	Mercury	ТВТ	PFOS	Diclofenac
0 years (no time lag)	0	0	0	0
0-5 years	0	0	1	6
6-10 years	1	4	1	1
11-25 years	4	1	3	1
26-50 years	3	1	1	0
51-100 years	3	0	0	0
More than 100 years	0	0	0	0
Excluded	0	2	1	3
Average	37.7	14.2	16.7	5.0
SD	24.7	11.1	11.0	5.0
Confidence	Moderate	Moderate	Moderate	Moderate
Number of experts	11	8	7	11

Table 5. Time lags in achieving GES with sufficient measures. Responses with clear reference to time lags due to lags in the implementation of measures have been excluded. The values in the row 'Number of experts' includes experts with excluded responses.

Data used: expert estimates of time lags

What are the pressures contributing to the state components?

This section presents the significance of different pressures to the concentrations of mercury, TBT, PFOS and diclofenac based on the responses to the expert surveys. They are all assessed at the Baltic Sea scale and enable comparisons across substances. Based on the responses, the number of pressures affecting the concentration varies from three (diclofenac) to nine (mercury) (Table 6). Confidence in Table 6 depicts the most common rating of expert's confidence in their own responses to the significance of pressures question, and it is high for most substances.

As expected, the most significant pressure is in all cases the pollution associated with the specific hazardous substance in question, with significance of 45-80%, but also several other pressures are considered to affect the concentrations. Change in hydrologic conditions is evaluated to be significant for the concentrations of all substances, and physical disturbance of marine habitats is particularly significant for TBT concentration.

Table 6. Significance of pressures (%) affecting the concentration of mercury, TBT, PFOS and diclofenac in the
Baltic Sea.

State component	Mercury concentration	TBT concentration	PFOS concentration	Diclofenac concentration
Pressure				
Effects of non-indigenous species		7		
Physical disturbance of marine habitats		22	2	4
Physical loss of marine habitats	8			
Effects of marine litter (excluding bycatch in ghost nets)			9	
Effects of eutrophication	3	2		
River, lake, or land habitat loss/degradation	6	2	13	
Hydrocarbon pollution	2			
Radioactive pollution	4			
Organohalogen pollution (e.g. PFOS, PCBs, PBDEs, dioxins)*			66	
Organotin pollution (e.g. TBT)*		47		
Heavy metal pollution*	48	5		
Pharmaceutical pollution*	6			81
Change in hydrologic conditions	19	15	11	15
Human-induced food web imbalance	4			
Confidence	High	High	High/ moderate	High
Number of experts	11	7	7	9

Colour scale for the significance of the pressure to the state variable (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100%

Pressures for which we cannot quantify the link between the pressure input, pressure and state in the SOM analysis are highlighted in grey, e.g. we cannot link reductions in nutrient inputs to reductions in the effects of eutrophication and further to concentrations of hazardous substances. Pressures marked with a * only have a quantified for the relevant target substance, i.e. mercury/heavy metal pollution, TBT/organotin pollution, PFOS/organohalogen pollution, diclofenac/pharmaceutical pollution.

Data used: expert estimates of significance of pressures to state components

What are the state components most affected by hazardous substances?

The data from the pressure-state expert surveys for hazardous substances, benthic habitats, birds, fish and mammals allow the identification of the state components most affected by hazardous substance pollution. These five expert surveys provide expert views on the significance of various pressures to the state components in the SOM analysis. The most affected state components are identified based on the percent contribution of different pressures to the state component. First, the average percent significance of pressures has been calculated by state component, and then the pressures having the highest averages have been identified. This approach will overemphasize pressures important to geographically smaller assessment areas and may impact the rankings, as no corrections to account for the sizes of the assessment areas have been applied. The ranking simply lists those state components in the SOM analysis most affected by the specific pressure.

Table 7 shows the state components most affected by the pollution pressures related to hazardous substances. Each of the pressures related to the four substances (heavy metal pollution, organotin pollution, organohalogen pollution, pharmaceutical pollution) affects the most the concentration of the relevant targeted substance (mercury, TBT, PFOS, diclofenac). Other state components affected are concentrations of other hazardous substances, bird species, fish species, grey seal, and benthic habitats.

Table 7. Top five state components most affected by hazardous substance pollution. Listing is based on Baltic-
wide averages of the significance of pressures to state components presented in each respective topic report.
Average number of expert responses for the state component is given in parenthesis (total response count for
the state component divided by the number of geographic areas for the state component).

Pressure	1 st most affected state component	2 nd most affected state component	3 rd most affected state component	4 th most affected state component	5 th most affected state component
Hydrocarbon pollution	Long-tailed duck (7)	Red-throated diver (6)	Great black- backed gull (5)	Grey seal (5)	Mercury concentration (11)
Radioactive pollution	Mercury concentration (11)	Cod (15)	Hard substrate vegetation dominated community (5.8)	Soft substrate vegetation dominated community (3.8)	Hard substrate epifauna dominated community (5.3)
Organohalogen pollution (e.g. PFOS, PCBs, PBDEs, dioxins)	PFOS concentration (7)	Grey seal (5)	Eel (11)		
Organotin pollution (e.g. TBT)	TBT concentration (7)	Hard substrate vegetation dominated community (5.8)	Soft substrate vegetation dominated community (3.8)	Hard substrate epifauna dominated community (5.3)	Soft substrate infauna dominated community (5)
Heavy metal pollution	Mercury concentration (11)	Soft substrate infauna dominated community (5)	Eel (11)	TBT concentration (7)	

Pharmaceutical pollution	Diclofenac concentration (9)	Mercury concentration (11)	Soft substrate infauna dominated community	Hard substrate vegetation dominated community	Soft substrate vegetation dominated community
			(5)	(5.8)	(3.8)

Data used: expert estimates of significance of pressures to state components for all topics Less than five most affected state components are presented in cases where there is insufficient data for some state component(s) affected by the pressure, i.e. there are not enough expert responses to the significance of pressures to the state component in the survey (e.g. some mammals species). This corresponds to the criteria for the format of presentation.

What are the reductions in pressure inputs from existing measures?

Table 8 shows the effects of existing measures in reducing the input of hazardous substances to the Baltic Sea in 2016-2030, considering the changes in the extent of human activities. They are calculated using the data on activity-pressure input contributions, effectiveness of measure types, links between existing measures and measure types, and projected development of human activities.

The activity-pressure input and the effectiveness of measures data are at the Baltic Sea level, and thus the total pressure reductions are presented as an average for the entire Baltic Sea.

Of the four hazardous substances, the *input of mercury* is expected to be reduced the most, from a moderate to high extent. The main activities contributing to the input of mercury are expected to remain constant until 2030. *Input of PFOS* is expected to decrease moderately. Of the main activities, changes are expected only in waste waters, where minor increases are expected due to urban sewage systems.

Negative projected reduction for the *input of TBT* implies that the input is projected to increase. This happens when the pressure input reductions from existing measures are unable to compensate for the pressure input increases caused by the projected future development of activities. For TBT, measures to control inputs (other than a ban on use) are not applied in the Baltic Sea, and therefore this result is influenced only by the projected development of activities. Increases in the extent of shipping and transport infrastructure and tourism and leisure activities lead to increases in the input of TBT. These may increase e.g. due to release from existing sources or deposits as may occur as a consequence of construction or maintenance dredging.

The *input of diclofenac* is expected to stay the same. Existing measures are implemented in the Bay of Mecklenburg, Arkona Basin, and Bornholm Basin. In the other sub-basins, projected future changes in the activities lead to increased inputs of diclofenac, e.g. based on increases in urban waste waters, which is a significant contributor to the input of diclofenac.

Overall, there is rather high uncertainty about the projected reductions in the input of hazardous substances, as shown by the large standard deviations. This stems from the uncertainty on both the effectiveness of measure types and activity-pressure input contributions. The certainty of the estimates is evaluated as low for TBT and diclofenac, and moderate for mercury and PFOS.

The impact of future development in the extent of human activities to the input of the substances is limited, as the main activities contributing to the input of the substances are generally assumed to remain constant (e.g. non-renewable energy generation, solid waste, restructuring of seabed morphology, activities and sources outside the Baltic Sea region). Further details on the effectiveness of different measure types and activity-pressure input contributions can be found in Tables 9 and 10.

Table 8. Projected reductions (%) in the input of mercury, TBT, PFOS and diclofenac from existing measures in the Baltic Sea in 2016-2030. The table depicts the most likely/expected values of reductions in pressure inputs and gives standard deviations in parenthesis.

Pressure input Area	Input of mercury	Input of TBT	Input of PFOS	Input of diclofenac
Baltic Sea	38	-13	24	-2
	(15) ○●●	(15) 00●	(11) 0••	(2) 00•

Colour scale for the pressure input reductions in percent (based on the expected value): <0%, 0-10%, 10-20%, 20-40%, 40-60%, 60-100%

Categories for the certainty of the pressure input reductions (based on the relative size of the standard deviation to the expected value): low: 000, moderate: 000, high: 000, high: 000

Data used: expert estimates of activity-pressure input contributions, expert estimates of effectiveness of measure types, information on existing measures

How effective are measure types in reducing pressure inputs?

This section presents the percent effectiveness of measure types in reducing the input of mercury, TBT, PFOS and diclofenac from a specific activity. The estimates are presented per activity, i.e. they portray the percent reduction in the pressure input from the activity in question, and not in the total input across all activities. Information on the reductions over all activities contributing to the pressure input is given in the section on the impacts of measure types. Data on the effectiveness of measure types originate from expert surveys and are at the Baltic Sea scale.

In the following, percent effectiveness is presented per pressure input, activity and measure type, and pooled over experts. The effectiveness estimates can be compared across measure types to assess, on average, how effective they are in relation to each other in reducing the pressure input from the specific activities, or across activities to assess which measure type could be the most effective for each activity.

Tables 9.1 - 9.4 present the expected percent effectiveness of the measures type and its standard deviation. Confidence in Tables 9.1 - 9.4 depicts the most common rating of expert's confidence in their own responses to the effectiveness of measure types question. Annex 11 presents the distributions of the effectiveness of measure types in controlling the input of the four substances for additional information.

For the input of mercury, each measure type can only reduce the pressure input from a single activity (Table 9.1). The measure type of *local/state/national targets to eliminate coal fired energy production* for non-renewable energy generation has the highest effectiveness for

that activity. The effectiveness of the rest of the measure types ranges between 20-60% in reducing the input from the specific activity.

Table 9.2 shows the effectiveness of measure types to in reducing the input of TBT from three activities. Each measure type can only reduce the pressure input from one activity. The most effective measures types are *reducing re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations* for activity restructuring of seabed morphology, *boat washing restrictions* for tourism and leisure activities and *in water hull cleaning regulation* for shipping.

Table 9.3 shows the effectiveness of measure types in reducing the input of PFOS from five activities. The input from activities *transport – air* and *urban uses (land use)* can only be reduced by a single measure type. *Clean-up of contaminated sites* is the most effective measure type in reducing the pressure input from industrial uses and solid waste. *Implementing technologies to remove PFOS from wastewater* is the most effective measure type for reducing the input from waste waters.

Table 9.4 shows that the input of diclofenac is mainly influenced by the activity *waste waters*. The measure types *technical upgrade of wastewater treatment plants* and *alter prescription practices to lower consumption* are the most effective ones.

Overall, there is considerable uncertainty about the effectiveness of certain measures types based on the standard deviations. The certainty of the estimates varies from low to moderate. Confidence of the estimates is high for measure types affecting diclofenac, and most often moderate for mercury, TBT and PFOS.

Estimates of the effectiveness of measure types are used to assess the effects of existing measures in reducing the input of hazardous substances to the Baltic Sea and to calculate pressure input reductions from existing measures by 2030.

Table 9.1 Effectiveness of measure types (%) in reducing the potential *input of mercury*. The effectiveness of a measure type is the percent reduction in the pressure input resulting from a specific activity. The table depicts the expected effectiveness, and standard deviation is given in parenthesis.

Measure type ID	Activity Measure type	Non- renewable energy generation	Transport – land	Industrial uses	Waste waters	Solid waste	Restructuring of seabed morphology	Transport – shipping	Activities and sources outside the Baltic Sea Region	Has corresponding existing measures in the SOM analysis (Yes/No)
1	Local/state/national targets to eliminate coal fired energy production	70 (29) ○●●	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Yes
2	Continued application of the EU Emissions Trading System	34 (20) ○●●	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Yes
4	Sand capping or removal of existing cellulose deposits	Not assessed	Not assessed	30 (23) ○○●	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	No
5	Ban on manufacturing processes where mercury or mercury compounds are used as a catalyst (e.g. In vinyl chloride monomer production	Not assessed	Not assessed	22 (23) 00•	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Yes
6	Ban on manufacturing processes where mercury is used as an electrode (e.g. in chlor-alkali production; Na or K methylate/ethylate production	Not assessed	Not assessed	28 (22) 00•	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Yes
7	Ban on export of Mercury (II) sulphate (HgSO4, CAS RN 7783-35-9) and Mercury (II) nitrate (Hg(NO3)2, CAS RN 10045- 94-0)	Not assessed	Not assessed	22 (23) 00•	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Yes
9	Reduce re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	51 (26) ○●●	Not assessed	Not assessed	No
10	Tighter allowed contamination levels during dredging activities	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	43 (24) ○●●	Not assessed	Not assessed	No

Measure type ID	Activity Measure type	Non- renewable energy generation	Transport – land	Industrial uses	Waste waters	Solid waste	Restructuring of seabed morphology	Transport – shipping	Activities and sources outside the Baltic Sea Region	Has corresponding existing measures in the SOM analysis (Yes/No)
11	Perform dredging under conditions (low water pH and temperature) that lower desorption from sediments, i.e. Preferable during winter	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	27 (22) 00•	Not assessed	Not assessed	No
12	Increased fuel efficiency standards	Not assessed	35 (24) 00●	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	No
13	Increased electrification of transportation fleets	Not assessed	41 (25) ○●●	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	No
14	Minamata convention	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	47 (18) ○●●	Yes
15	Paris agreement	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed	44 (20) ○●●	Yes
16	EU mandatory use of dental amalgam separators retaining at least 95% of amalgam particles	Not assessed	Not assessed	Not assessed	40 (24) 00●	Not assessed	Not assessed	Not assessed	Not assessed	Yes
17	5% increase in EU mandatory WEEE recycling levels	Not assessed	Not assessed	Not assessed	Not assessed	36 (32) 00●	Not assessed	Not assessed	Not assessed	Yes
18	Further restrictions on storage and disposal of waste/dredged material containing mercury	Not assessed	Not assessed	Not assessed	Not assessed	44 (30) ○○●	Not assessed	Not assessed	Not assessed	Yes
140	Eurasian Economic Union restrictions on hazardous substances in electrical products	Not assessed	Not assessed	Not assessed	Not assessed	31 (21) 00●	Not assessed	Not assessed	Not assessed	Yes
	Confidence	Moderate	Low-High	Low	Moderate- High	Moderate	Moderate	Moderate- High	Moderate	
	Number of experts	7	7	6-7	7	5-6	7	7	7	

Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100%

Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: $\circ \circ \bullet$, moderate: $\circ \bullet \bullet$, high: $\bullet \bullet \bullet$ Data used: expert estimates of effectiveness of measure types

Full activity names:

- Non-renewable energy generation (fossil fuel and nuclear powerplants)
- Transport land (cars and trucks, trains), including infrastructure
- Industrial uses (oil, gas, industrial plants)
- Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)
- Solid waste (e.g. land-based disposal of dredged material, landfill, solid waste streams)
- Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
- Transport shipping (incl. anchoring, mooring)
- Activities and sources outside the Baltic Sea Region

Table 9.2 Effectiveness of measure types (%) in reducing the potential *input of TBT*. The effectiveness of a measure type is the percent reduction in the pressure input resulting from a specific activity. The table depicts the expected effectiveness, and standard deviation is given in parenthesis.

Measure type ID	Activity Measure type	Restructuring of seabed morphology	Tourism and leisure activities	Transport – shipping	Has corresponding existing measures in the SOM analysis (Yes/No)
9	Reduce re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations	64 (21) ○●●	Not assessed	Not assessed	No
10	Tighter allowed contamination levels during dredging activities	55 (16) ●●●	Not assessed	Not assessed	No
11	Perform dredging under conditions (low water pH and temperature) that lower desorption from sediments, i.e. Preferable during winter	30 (20) 00●	Not assessed	Not assessed	No
19	Restrictions on anchoring zones in highly contaminated areas	Not assessed	Not assessed	31 (22) 00●	No
20	In water hull cleaning regulation	Not assessed	Not assessed	61 (24) ○●●	No
21	Implement technologies for the degradation of TBT from sediment (e.g. chemical oxidation, bioremediation)	46 (20) ○●●	Not assessed	Not assessed	No
22	Boat washing restrictions	Not assessed	69.0 (33.1) ○●●	Not assessed	No
23	Monitoring of tin in leisure boat hulls	Not assessed	19.1 (11.7) 00●	Not assessed	No
	Confidence	Moderate	Moderate	High	
	Number of experts	6	6	6	

Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100%

Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: 000, moderate: 000, high: 0

Full activity names:

- Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
- Tourism and leisure activities (boating, beach use, water sports, etc.)
- Transport shipping (incl. anchoring, mooring)

Table 9.3 Effectiveness of measure types (%) in reducing the potential *input of PFOS*. The effectiveness of a measure type is the percent reduction in the pressure input resulting from a specific activity. The table depicts the expected effectiveness, and standard deviation is given in parenthesis.

Measure type ID	Activity	Transport – air	Urban uses	Industrial uses	Waste waters	Solid waste	Has corresponding existing measures in the
	Measure type						SOM analysis (Yes/No)
24	Stockholm convention PFOS accepted use and specific exemptions limited to: insect baits, metal plating in a closed loop, fire-fighting foams	Not assessed	Not assessed	30 (22) 00●	32 (29) 00●	20 (25) 00●	Yes
25	Stockholm convention PFOS lists no accepted uses or exemptions	Not assessed	Not assessed	54 (22) ○●●	33 (28) 00●	29 (27) 00●	Yes [†]
26	Clean-up of contaminated sites	Not assessed	Not assessed	59 (29) ○●●	Not assessed	56 (27) ○●●	Yes
27	Restoration/upgrading of old landfill sites	Not assessed	Not assessed	Not assessed	Not assessed	50 (22) ○●●	Yes
28	Limits on PFOS concentrations in sludge used in commercial applications	Not assessed	Not assessed	Not assessed	39 (22) ⊙●●	Not assessed	No
29	Implement technologies to remove PFOS from wastewater (e.g. activated carbon or high- pressure membrane systems)	Not assessed	Not assessed	Not assessed	54 (22) ○●●	Not assessed	No
30	Stockholm convention ban on PFOS fire-fighting foams	Not assessed	68 (29) ○●●	Not assessed	Not assessed	Not assessed	No
31	Stockholm convention ban on PFOS in aviation hydraulic fluid	33 (29) oo●	Not assessed	Not assessed	Not assessed	Not assessed	No*
	Confidence	Moderate	Moderate	Moderate	Moderate	Moderate	
	Number of experts	8	7	7	5-6	5-6	

[†]Though not implemented through the Stockholm convention, a Swedish measure aimed at a similar outcome is an existing measure and is accounted for through this measure type *Implemented in the Baltic Sea region. Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100% Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: 00•, moderate: 0••, high: ••• Data used: expert estimates of effectiveness of measure types

Full activity names:

- Transport air, including infrastructure
- Urban uses (land use), including storm water runoff
- Industrial uses (oil, gas, industrial plants)
- Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)
- Solid waste (e.g. land-based disposal of dredged material, landfill, solid waste streams)

Table 9.4 Effectiveness of measure types (%) in reducing the potential *input of diclofenac*. The effectiveness of a measure type is the percent reduction in the pressure input resulting from a specific activity. The table depicts the expected effectiveness, and standard deviation is given in parenthesis.

Measure	Activity	Waste waters	Has corresponding existing measures
type ID	Measure type		in the SOM analysis (Yes/No)
32	Technical upgrade of wastewater treatment plants: e.g. granular activated	58	Yes
	carbon (GAC) adsorption, ozonation, UV light, nanofiltration etc	(22) •••	
33	Improved application of existing WWT technologies (e.g. increasing the sludge	31	No
	retention time, use of both nitrification and denitrification treatment steps)	(28) 00•	
34	Improved pharmaceutical take-back schemes	33	No
		(23) 00•	
35	Increase public awareness of pharmaceutical take-back schemes	35	No
		(19) ○●●	
36	Alter prescription practices to lower consumption (drug dosage, pack size,	50	No
	alternative medicine, convert OTC access to prescription)	(22) •••	
	Confidence	High	
	Number of experts	7	

Colour scale for the effectiveness of a measure type in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100%

Categories for the certainty of the effectiveness estimate (based on the relative size of the standard deviation to the expected value): low: 000, moderate: 000, high: 000, high: 000, high:

Full activity names:

- Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)

Which activities contribute to pressure inputs?

Table 10 shows the contribution of activities to the input of hazardous substances. Expert elicitation was used to estimate the activity-pressure input relationships for the pressure input concerning the input of mercury, PFOS, TBT and diclofenac, and the assessment was done at the level of the entire Baltic Sea.

19 different activities were identified to contribute to the input of these hazardous substances (see Table 10), with the number of activities varying between 5 to 12 (mercury 12, PFOS 9, TBT 10, and diclofenac 5). All the listed activities refer only to contributions originating within the Baltic countries. All contributions originating outside the Baltic countries, regardless of activity, are included under the category *activities and sources outside the Baltic Sea Region.* An additional category, *other/not determined*, captures remaining inputs not linked to a specific activity by experts. Due to variation in expert responses, contributions in this category could come from any of the 31 activities in the SOM analysis.

For mercury, the two activities that contribute the most to the pressure input are *activities and sources outside the Baltic Sea Region* and *non-renewable energy generation*. *Industrial uses* also have a considerable impact.

The activity *solid waste* contributes the most to the input of PFOS. Other important activities are *waste waters* and *activities and sources outside the Baltic Sea Region*. A significant portion of PFOS inputs come from undetermined sources (*other/not determined*).

For TBT, the activities with the highest contribution to the pressure input are *solid waste* and *restructuring of seabed morphology*, while the other activities have only minor contributions. A considerable amount of inputs come from undetermined sources (*other/undetermined*).

For diclofenac, the activity with the highest contribution to the pressure input is *waste waters* (51%). *Solid waste* (20%) is also an important activity. A significant part of the inputs come from undetermined sources (*other/not determined*).

The certainty of the activity-pressure input estimates is in most cases low and occasionally moderate, based on the standard deviations.

Table 10. Activity-pressure input contributions (%). The activity-pressure input contributions show the percent share the activity contributes to the input of mercury, PFOS, TBT and diclofenac. Standard deviation is given in parenthesis.

Activity	Input of mercury	Input of PFOS	Input of TBT	Input of diclofenac
Agriculture			8 (13) 00•	3 (4) 00●
Forestry	1 (2) 00●			
Non-renewable energy generation (fossil fuel and nuclear powerplants)	26 (18) 00●			
Canalisation and other watercourse modifications (dams, culverting, trenching, weirs, large-scale water deviation)	1 (1) 00•			

Activity	Input of mercury	Input of PFOS	Input of TBT	Input of diclofenac
Transport – air, including infrastructure		2		
		(2) 00•		
Urban uses (land use), including storm		10	4	5
water runoff		(11) 00•	(5) 00●	(6) 00●
Industrial uses (oil, gas, industrial plants)	11	3		
	(15) 00●	(4) 00●		
Waste waters (urban, industrial, and	1	18	4	51
industrial animal farms; includes all waste	(1) 00•	(13) 00•	(5) 00●	(24) ○●●
streams entering wastewater systems e.g.				
microplastics, pharmaceuticals, etc.)				
Solid waste (e.g. land-based disposal of	6	28	24	20
dredged material, landfill, solid waste	(9) 00•	(13) ○●●	(26) 00•	(22) 00●
streams)				
Aquaculture – marine, including	1			
infrastructure	(1) 00•			
Renewable energy generation (wind, wave			3	
and tidal power), including infrastructure			(5) 00•	
Extraction of minerals (rock, metal ores,	5			
gravel, sand, shell)	(8) 00•			
Extraction of oil and gas, including	3	3		
infrastructure (e.g. pipelines)	(4) 00●	(4) 00•		
Restructuring of seabed morphology	6		23	
(dredging, beach replenishment, sea-based	(9) 00•		(24) 00•	
deposit of dredged material)				
Tourism and leisure activities (boating,			4	2
beach use, water sports, etc.)			(6) 00●	(3) 00●
Tourism and leisure infrastructure (piers,		2		
marinas)		(3) 00•		
Transport – shipping (incl. anchoring,			4	
mooring)			(6) 00•	
Transport – shipping infrastructure	2	4	7	
(harbours, ports, shipbuilding)	(4) 00●	(6) 00•	(9) 00•	
Activities and sources outside the Baltic Sea	28	12	6	
Region	(21) 00•	(10) 00●	(9) 00•	
Other/not determined	8	18	14	19
	(9) 00•	(8) ○●●	(15) 00●	(23) 00●
Number of experts	6	6	6	6

Colour scale for the contribution of the activity to the pressure input in percent (based on the expected value): 0-10%, 10-20%, 20-40%, 40-60%, 60-100%

Categories for the certainty of the activity-pressure input contribution estimate (based on the relative size of the standard deviation to the expected value): low: 000, moderate: 000, high: 000 Data used: expert estimates of activity-pressure input contributions

What are the impacts of measure types?

The impacts of measure types show the impact of measure types on reducing the input of mercury, TBT, PFOS and diclofenac. They include the effectiveness of measure types and the contribution of activities to pressure input. Thus, the impact shows how much the measure type reduces the pressure input across all activities contributing to the pressure input and give indications on which measures could be the most relevant in addressing specific pressure inputs.

The measures types having the most impact on reducing the input of mercury *are local/state/national targets to eliminate coal fired energy production*, the *Minamata convention* and the *Paris agreement*.

Input of TBT is decreased most by reducing re-suspension from sediments by limiting restructuring of seabed to areas with low concentrations, tighter allowed contamination levels during dredging activities, and implementing technologies for the degradation of TBT from sediment (e.g. chemical oxidation, bioremediation).

For the input of PFOS, *clean-up of contaminated sites*, the *Stockholm convention PFOS lists no accepted uses or exemptions,* and *restoration/upgrading of old landfill sites* are the most impactful measure types.

The input of diclofenac, the measure types having most impacts are *technical upgrade of* wastewater treatment plants: e.g. granular activated carbon (GAC) adsorption, ozonation, UV light, nanofiltration etc. and altering prescription practices to lower consumption (drug dosage, pack size, alternative medicine, convert OTC access to prescription).

Detailed information on the impacts of measures is given in Annex 12.

What are the impacts of existing measures?

This section presents information about existing measures affecting the input of mercury, TBT, PFOS and diclofenac. In the SOM analysis, existing measures are those measures in current policy frameworks (e.g. BSAP, EU MSFD, EU WFD, EU Biodiversity Strategy 2020) that affect pressures and environmental state within the time frame of the analysis (2016–2030). This includes measures that have been implemented, are partially implemented or are planned to be implemented by 2030. Measures which have already been fully implemented and have fully affected pressures and environmental state by 2016 have been excluded, as no further improvement of status is expected during the 2016–2030 period. Information about existing measures was compiled through a literature review and supplemented by Contracting Parties.

The impact is the percent reduction in a specific pressure from implementing the measure in the relevant spatial area. It has been calculated based on the effectiveness of the measure, proxied by the effectiveness of the measure type it corresponds to, and the contribution of activities to the pressure in question. Similar to the impact of a measure type, the impact of an existing measure indicates how much the measure reduces the pressure across all activities contributing to the pressure. Tables 11.1, 11.2 and 11.3 present the impacts of existing measures in reducing the input of mercury, PFOS and diclofenac. There are no existing measures affecting the input of TBT in the SOM analysis. The impacts are presented both for the Baltic Sea scale and for the area affected by the existing measure. In addition, information on the share of the Baltic Sea area affected by the existing measure is included. Both the effectiveness of the measure and the spatial area affected are relevant for the impact at the Baltic Sea scale. Some existing measures may have high impact at the local affected area, but their impact at the Baltic Sea scale is low because they only affect a small area, while some measures may have a relatively low impact in the affected area but affect a large share of the Baltic Sea.

There are altogether 17 existing measures affecting the input of mercury, 7 affecting the input of PFOS and one affecting the input of diclofenac in the SOM analysis. At the Baltic Sea scale, the Minamata convention and the Paris agreement appear to be the most impactful to reduce the input of mercury, as they apply to the entire Baltic Sea. There are several existing measures affecting a large share of the Baltic Sea for mercury. For PFOS, the amendment to the Stockholm convention seems to be the most impactful measure at the Baltic Sea scale, being applied to the entire sea area. The other existing measures impacts smaller areas in the Baltic Sea. The only existing measure in the SOM analysis for diclofenac is related to technical upgrade of water treatment plants to allow reduction of other substances, which applies to a very limited area of the Baltic Sea and despite having a relative high impact in the area affected, has a low impact at the Baltic Sea scale.

Table 11.1. Impacts of existing measures in reducing the input of mercury. Impact is the percent reduction in a specific pressure from implementing the measure. Standard deviations are given in parenthesis. Note that values less than 0.5 have been rounded to zero. Measure name and description correspond to those used in Annex 4 for referencing purposes. In rare cases, the name and description may not be representative of the existing measure due to the free text reporting format used during existing measures data collection. Standard deviations are given in parenthesis.

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
Minamata convention	Minamata convention	Activities and sources outside the Baltic Sea Region	All countries	Minamata convention	13 (12)	13 (12)	100
Paris agreement	Paris agreement	Activities and sources outside the Baltic Sea Region	All countries	Paris agreement	12 (12)	12 (12)	100
Continued application of the EU Emissions Trading System	Continued application of the EU Emissions Trading System	Non- renewable energy generation	EU countries	Continued application of the EU Emissions Trading System	8 (7)	9 (7)	94
Treatment and storage of mercury waste	Mercury Directive:3. Prior to being permanently disposed of, mercury waste shall undergo conversion and, where intended to be disposed of in above-ground facilities, conversion and solidification. Mercury waste that underwent conversion and	Solid waste	EU countries	Further restrictions on storage and disposal of waste/dredged material containing mercury	3 (4)	3 (5)	92
Mercury waste	Mercury Directive: Article 11 Waste	Solid waste	EU countries	Further restrictions on storage and disposal of waste/dredged material containing mercury	3 (4)	3 (5)	92
chlor-alkali decommissioning	Minamata Convention: Article 3 Mercury supply sources and trade	Solid waste	EU countries	Further restrictions on storage and disposal of waste/dredged material containing mercury	3 (5)	3 (5)	98
Control of industrial activities	Mercury Directive: Article 7 Industrial activities	Industrial uses	EU countries	Ban on manufacturing processes where mercury is used as an electrode (e.g. in chlor- alkali production; Na or K methylate/ethylate production	3 (5)	3 (6)	92

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
Mercury export restrictions	Mercury Directive: Article 3 Export Restrictions	Industrial uses	EU countries	Ban on export of Mercury (II) sulphate (HgSO4, CAS RN 7783- 35-9) and Mercury (II) nitrate (Hg(NO3)2, CAS RN 10045-94-0)	2 (4)	3 (5)	92
Control of industrial activities	Mercury Directive: Article 7 Industrial activities	Industrial uses	EU countries	Ban on manufacturing processes where mercury or mercury compounds are used as a catalyst (e.g. In vinyl chloride monomer production	2 (4)	3 (5)	92
Political agreement for the Danish energy policy 2012-20	Funding for increased biomass energy production and reduction/stop of coal fired plants	Non- renewable energy generation	DK	Local/state/national targets to eliminate coal fired energy production	2 (2)	18 (16)	11
5% increase in EU mandatory WEEE recycling levels	WEEE Directive	Solid waste	EU countries	5% increase in EU mandatory WEEE recycling levels	2 (4)	2 (4)	94
Control of mercury in dental amalgam	Mercury Directive: Article 10 Dental amalgam	Waste waters	EU countries	EU mandatory use of dental amalgam separators retaining at least 95% of amalgam particles	0 (0)	0 (0)	92
Existing landfill meet standards	Existing landfills not fulfilling the criteria of proper landfilling practices required for obtaining a permit should be closed, or restored in accordance with the national legislation	Solid waste	RU	Further restrictions on storage and disposal of waste/dredged material containing mercury	0 (0)	3 (5)	6

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
HELCOM Hazardous Substances Strategy	National legislation of the CPs takes into account the principle and methodologies of the Strategy to implement HELCOM objective for hazardous substance. 3. Strategy of HELCOM with regard to Hazardous Substances Using the guiding principles, in particular the precautionary principle, the Commission will identify, prioritize and require the Contracting Parties to control and monitor (i.e. to prevent, reduce and, to the extent possible, eliminate) the emissions, discharges and losses of hazardous substances which reach, or could reach, the marine environment. Appendix II List of Priority Hazardous Substances 10. Mercury	Solid waste	RU	Eurasian Economic Union restrictions on hazardous substances in electrical products	0 (0)	2 (4)	6
Regulation of deposition (deponeringsbeke ndtgørelsen)	Regulation for permanent disposal of waste at landfills to insure that the perkolat can be manged and treated correctly, and to insure that there isn't any leaching of hazardous substances (incl. Mercury and PCB) to the environmental such as groundwater etc. Limit values are given for both mercury and PCB.	Solid waste	DK	Further restrictions on storage and disposal of waste/dredged material containing mercury	0 (1)	3 (5)	11
Regulation of bio- ashes (bioaskebekendtg ørelsen)	Regulation for the utilization of bio-ashes for soil treatment - obligation to measure the content of mercury, and there is stated an limit value in the regulation.	Solid waste	DK	Further restrictions on storage and disposal of waste/dredged material containing mercury	0 (1)	3 (6)	11
Regulation of sludge /Slambekendtgør elsen	Regulation for the utilization of sludge for soil treatment - obligation to evalute the possibility of PCB being in the sludge. If so, there is an obligation to measure, and compare with a limit value. (There are also limit values for mercury)	Solid waste	DK	Further restrictions on storage and disposal of waste/dredged material containing mercury	0 (1)	3 (5)	11

Data used: information about existing measures and their spatial scale, expert estimates of effectiveness of measures types, expert estimates of activity-pressure contributions

Table 11.2. Impacts of existing measures in reducing the input of PFOS. Impact is the percent reduction in a specific pressure from implementing the measure. Standard deviations are given in parenthesis. Note that values less than 0.5 have been rounded to zero. Measure name and description correspond to those used in Annex 4 for referencing purposes. In rare cases, the name and description may not be representative of the existing measure due to the free text reporting format used during existing measures data collection. Standard deviations are given in parenthesis.

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
No name	Amendment to Stockholm convention adopted 20.12.2019	Waste waters, Solid waste, Industrial uses	All countries	Stockholm convention PFOS accepted use and specific exemptions limited to: insect baits, metal plating in a closed loop, fire- fighting foams	12 (10)	12 (10)	100
No name	Hazardous activities and contaminated sites (supervision and investigation)	Solid waste, Industrial uses	SE	Clean-up of contaminated sites	7 (4)	18 (11)	36
Closed landfills meet standards	The environmental risk of already closed landfills should be assessed and pollution prevention measures should be implemented.	Solid waste	DK, SE	Restoration/upgrading of old landfill sites	7 (4)	14 (9)	47
No name	Development of new fire extinguishing methods without PFAS, information and education regarding alternative fire extinguishing methods to minimize the use of PFAS.	Waste waters, Solid waste, Industrial uses	SE	Stockholm convention PFOS lists no accepted uses or exemptions	6 (4)	16 (12)	36
Existing landfill meet standards	Existing landfills not fulfilling the criteria of proper landfilling practices required for obtaining a permit should be closed, or restored in accordance with the national legislation	Solid waste	FI	Restoration/upgrading of old landfill sites	3 (2)	14 (9)	20

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
No name	Supervision of activities at risk of not complying to environmental quality standards (MKN - Swedish for Miljökvalitetsnormer). Identification of, and measures towards contaminated sites, deposits, textile industry, airports etc. Supervision of, and measures towards municipal fire departments regarding handling of equipment in contact with PFOS and PFAS.	Industrial uses	SE	Clean-up of contaminated sites	1 (1)	2 (3)	36
The National Implementat ion Plan on Persistent Organic Pollutants (NIP) for 2017-2025	The program aims to protect human health and the environment from POPs. Approved by Order No D1-396 of the Minister of Environment on 11.05.2017, as last amended on 26.06.2018)- https://www.e- tar.lt/portal/lt/legalAct/5a479810393911e7 b66ae890e1368363/asr	Solid waste, Industrial uses	LT	Clean-up of contaminated sites	0 (0)	18 (11)	2

Data used: information about existing measures and their spatial scale, expert estimates of effectiveness of measures types, expert estimates of activity-pressure contributions Full activity names:

- Industrial uses (oil, gas, industrial plants)
- Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)
- Solid waste (e.g. land-based disposal of dredged material, landfill, solid waste streams)

Table 11.3. Impacts of existing measures in reducing the input of diclofenac. Impact is the percent reduction in a specific pressure from implementing the measure. Standard deviations are given in parenthesis. Note that values less than 0.5 have been rounded to zero. Measure name and description correspond to those used in Annex 4 for referencing purposes. In rare cases, the name and description may not be representative of the existing measure due to the free text reporting format used during existing measures data collection. Standard deviations are given in parenthesis.

Measure name	Description	Activities	Countries	Measure type	Impact at the Baltic Sea scale (%)	Impact in the area affected (%)	Affected area of the total Baltic Sea (%)
Measures to reduce unregulated, diffuse inputs of substances, e.g. from sediment removal, potentially including subsequent treatment, recovery and disposal	Technical upgrade of water treatment plants to allow reduction of other substances (e.g. removal of micro pollutants) through suitable processes.	Waste waters	DE	Technical upgrade of wastewater treatment plants: e.g. granular activated carbon (GAC) adsorption, ozonation, UV light, nanofiltration etc	1 (1)	29 (19)	3

Data used: information about existing measures and their spatial scale, expert estimates of effectiveness of measures types, expert estimates of activity-pressure contributions Full activity names:

- Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)

Background of respondents

This section provides summarizing information on the number and background of experts contributing to the surveys to collect data for the analysis.

The number of experts contributing to the hazardous substance surveys is shown in Table 11, with the sub-topic division and geographic area presented in Table 12. For the effectiveness of measures survey for hazardous substances, altogether 14 survey responses with 18 contributing experts were received. One of the answers was a group response with five contributing experts. For the pressure-state survey, 18 responses from 20 experts were received, from all contracting parties except Russia. Two of the responses were group answers with two contributing experts in each. For the activity-pressure input survey, three responses were received with six contributing experts.

Table 11. Number of experts contributing to the hazardous substance surveys

Survey	DE	DK	EE	FI	LT	LV	PL	RU	SE	Total
Effectiveness of measures	-	1	3	6	1	-	2	-	5	18
Pressure-state linkages	1	1	3	5	1	3	1	-	5	20
Activity-pressure input contributions	-	1	1	4	-	-	-	-	-	6

Survey	Sub-topic	Geographic area	Response count
Effectiveness of measures	Mercury	Whole Baltic	11
	ТВТ	Whole Baltic	12
	PFOS	Whole Baltic	10
	Diclofenac	Whole Baltic	12
Pressure-state linkages	Mercury	Whole Baltic	12
	ТВТ	Whole Baltic	8
	PFOS	Whole Baltic	8
	Diclofenac	Whole Baltic	12

Table 12. Number of responses to the hazardous substance surveys

For the experts participating in the effectiveness of measures and the pressure state survey, more detailed information about their background is available (Table 13). Experts stated most often environmental research, chemistry, contamination and marine science as their respective field. About half of the experts had 10-20 years of experience in their field, while only 5-6% had 0-2 years of experience. Experts represented research institutions, environmental consultancies, government institutes, or ministries.

Effectiveness of measures			Pressure-state			
Years	Number of experts Share of experts		Number of experts	Share of experts		
0-2 years	1	6 %	1	5 %		
3-5 years	2	11 %	2	10 %		
5-10 years	3	17 %	3	15 %		
10-20 years	9	50 %	11	55 %		
over 20 years	3	17 %	3	15 %		

Table 13. Years of experience in the field for the litter effectiveness of measures survey

Discussion

Impact of alternative scenarios for development of human activities

The detailed results are presented for the most likely development scenario for the extent of human activities in 2016–2030. In addition, three other development scenarios were estimated: no change, low change and high change scenarios. These scenarios cover 9 out of the 31 activities in the SOM analysis. The extent of other activities is assumed to remain constant in all scenarios.

As activities contribute to pressure inputs, their assumed change over time affects the pressure input reductions and probability to achieve GES or state improvements. The impact depends on to what extent the activities contributing to the specific pressure input are covered in the change scenarios. For hazardous substances, the coverage of activities that contribute to pressure inputs in the change scenarios ranges from very low to high, depending on the substance.

Overall, the impact of alternative development scenarios is limited in the case of the four substances. For mercury, the future development scenario has only negligible impacts on pressure input reductions and probability to achieve GES, as almost all activities contributing to the input of mercury are excluded from the 9 activities that have development scenarios, and are thus assumed to remain constant in all scenarios.

For TBT, the only impact on inputs comes from the changes in human activities, and therefore the scenario has a clear effect on pressure input reductions, despite the fact that most activities contributing to TBT are also expected to remain constant. When activities are assumed to stay constant, there are no projected changes in the input of TBT. When a high change scenario is assumed, the input of pressures increases compared to the most likely scenario. However, this change in pressure inputs does not affect the probability to achieve GES.

For PFOS, the change scenarios have a negligible influence on the input reductions, because the activities contributing to the input of PFOS are not projected to change significantly in any of the scenarios.

Similarly, for diclofenac, the impact of the assumption on future development of activities is limited due to minor changes in the extent of human activities in all scenarios, although the change scenarios cover over half of the activities contributing to its input.

Impact of using literature data on effectiveness of measures

In addition to survey data from experts, literature data on the effectiveness of measures has been compiled. The literature data points have been used in a similar way as the expert survey responses, and when it has been available, it has been used to replace the expert estimates of the effectiveness of the measure type. However, literature estimates are not available for all measure types. Thus, it is not possible to implement the model estimation and provide the results relying entirely on the literature data on effectiveness of measure types. Thus, the model including the literature estimates is a combination of literature and expert data on effectiveness of measure types. The origin of other data components is not affected. For hazardous substances, 71 estimates from 23 studies could be included in the SOM model. The projected pressure input reductions from existing measures are not significantly affected by the inclusion of literature data for any of the substances. Thus, the results on sufficiency of measures to achieve GES do not change.

Evaluation of quality and confidence

The SOM analysis for hazardous substances is complete in the sense that it has been possible to evaluate the sufficiency of existing measures to achieve GES. All elements of the results have been presented in a quantitative format, as the data have been deemed to suffice for that. It is worth noting that the results are not representative of all hazardous substances, but only to the four substances covered in the analysis.

The overall certainty of the assessment for hazardous substances could generally be characterized as moderate. The number of expert responses is relatively high, as 8-12 experts have contributed to each assessment component. Experts from eight coastal countries have contributed to some part of the assessment. For the individual results, average certainty is low for the activity-pressure input contributions, moderate for effectiveness of measures types, and low-moderate to projected reductions in pressure inputs. There is also considerable uncertainty about the required pressure reductions to achieve GES. These uncertainties should be kept in mind, in particular when examining the numeric estimates. Quality and precision could potentially be improved with the collection of additional expert responses.

The most common confidence level experts reported for their own evaluations are moderate for effectiveness of measures, high for significance of pressures to state components, and moderate for required pressure reductions. This indicates relatively high confidence in the survey responses.

Further, future development scenarios have been constructed only for few activities contributing to the input of the substances, and several important activities have been assumed to remain constant until 2030. This applies in particular to mercury. The relevance of the analysis could be improved by covering additional activities in the change scenarios.

There were some technical challenges that affected the survey implementation. Firstly, there was a problem in the survey software for the effectiveness of measure types survey that resulted in losing some responses. The original responses became often unusable, as it was not possible to identify which items had been intentionally omitted and cases were data may have been lost. This issue was addressed by sending follow-up invitations for experts to review and, when needed, complement their original saved response. Not all experts participated in the review and those responses had to be deleted from the final sample, thus the final numbers presented above represent only those with completed and reviewed responses. Secondly, the simultaneous assessment of effectiveness of a measure type and certainty of that effectiveness proved in some cases difficult, as it required placing non-quantitative markers in a coordinate system to generate quantitative estimates. The markers were translated into effectiveness and certainty values between 0 and 100. Some experts would have preferred that the quantitative estimates would have been visible and could have been transparently influenced.

When interpreting the results, the assumptions and generalizations that were made when collecting the input data and defining and using the data on activity-pressure input contributions, measure type effectiveness and pressure-state linkages need to be taken into account. The input data are based mainly on expert elicitations rather than existing models and data and reflect substantial uncertainty. For more information on the SOM methodology, data collection and assumptions, see <u>this document</u>.

Reflection on measure types

Generally, the measure types for hazardous substances appear to have struck a balance between specificity and general applicability, and as a whole do not show any systemic design flaws. However, for individual measure types, potential improvements can still be identified.

For mercury, measure types 1 and 2, covering mercury from non-renewable energy generation, very likely overlap in that measure type 1 can be implemented under the actions of measure type 2. The survey question for measure type 1 may also be poorly suited to elicit an informed response from experts. Estimated effectiveness could include any remaining mercury emissions from non-renewable energy generation (heating oil, waste combustion, peat, etc.) and the likelihood of the target being met. Whether this additional variability is desirable is unclear, but the measure type should be reviewed in any future work. Measure types 12 and 13 cover decreased use of fossil fuels in the transportation industry, but their formation leaves the quantity of reduction unclear which undoubtably increases the uncertainty of any estimate. This has been a point of difficulty when designing the measure types generally and methods of more precisely addressing this will be important moving forward. Measure type 18 has value as an indication that experts see potential improvements in further restrictions on mercury disposal but fails to provide any context for the experts or the results as to what those restrictions might be. This reduces its applicability when used in the model. Generally, these broad 'catch-all' measure types are likely to remain, but their prominence should be reduced as much as possible by providing an otherwise comprehensive list of more definitive measure types.

For PFOS, measure types 26 and 27 concern local actions to reduce release from contaminated sites and it is unclear how these estimates should be interpreted. These measure types are part of a broader set of measure types addressing localized action where the reported estimates are difficult to link to existing measures (e.g. measure types 1, 4, 21, 29, 32, 33). Without an understanding of the significance of any particular local action to the broader input, use of these measure types in the model is not ideal. However, they do provide a clear indication of the importance of these measure types to the overall reduction of inputs. This spatial aspect of local measures must be a priority for future effort within this framework.

Finally, measure types 9, 10 and 11 concerning resuspension of substances from dredging activities have been applied across several substances. This is not a concern in and of itself but should be a focus for review prior to use in any future work.

Lessons learned

Many different approaches have been applied to specific topics within the general SOM framework and hazardous substances is no exception. Some of these approaches have worked well while others have not.

The choice to focus on specific substances rather than categories of pollutants removed any chance of broad coverage of the topic of hazardous substances. However, this trade-off has clearly been the correct choice, as any attempt at broad coverage would have been completely infeasible due to the structure of existing measures, difficulty in identifying an appropriate expert pool, and poor applicability of any model outcome.

Hazardous substances took a unique approach to informing experts of the current state of substance concentration in the Baltic Sea. Instead of a one-out-all-out approach (used in e.g. coastal fish assessment), conducting separate assessments for different spatial areas (used in all topics except NIS and hazardous substances) or providing a Baltic wide assessment (not consistent with the HELCOM HOLAS II assessment structure and rejected by topic experts as inappropriate), experts were provided with a link to the latest indicator reports containing detailed reviews of the latest assessments for each substance. This approach performed more poorly than the options used for other topics and in the future either a one-out-all-out approach and/or multiple spatial assessments should be used.

The pressure list for the SOM analysis was not adapted for any specific topics as the list of 23 pressures was considered comprehensive enough to cover all topics. However, this caused difficulties for hazardous substances where assumptions had to be made to allow for a complete analysis (see the Topic specific model structure, assumptions and challenges section). This issue could be solved by amending the pressure list for hazardous substances to include substance specific pressures (e.g. mercury pollution) rather than only the more general pollution pressures (e.g. heavy metal pollution).

Future work should also bring more clarity to the division of the input of a pollutant and its environmental concentration. While the pressure inputs are clearly delineated between the two (e.g. input of mercury), the hazardous substance pressures (e.g. heavy metal pollution) are not. Further it is not clear the most appropriate formulation for the pressures given the structure of the SOM analysis (input and current concentrations versus just input). Further work on this aspect is needed.

Use of results, implications and future perspectives

It is worth noting that the results are not representative for all hazardous substances, but only to the four substances covered in the analysis. Thus, the results should not be generalized to broader sets of hazardous substances.

Could you add stuff like how parallels between similarly behaving substances or substance groups may be possible to draw, but caution should be taken in all such processes.

Further development of the understanding and data relevant for each substance of interest within a causal framework, including for example the specifics on production,

application, disposal and environmental impacts would all support an improved and more quantitative or numeric assessment in the future.

Furthermore, it is abundantly clear that the topic of hazardous substances and any future assessment of measures and their sufficiency (especially where potential new measures are explored) needs to consider a wider range of substances. This may conceivably produce more challenges for future SOM analyses if for example new and emerging substances of concern are considered. Not only would these substances have minimal data, but they would likely also have no GES threshold values and little information within causal frameworks.

References

Blom, C. and Hansen, L. 2015. Analysis of per- and polyfluorinated substances in articles. Nordic Working Papers. 2015:911HELCOM (2018a): State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings 155.

HELCOM 2018a. State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings 155.

HELCOM 2018b. Metals (lead, cadmium and mercury). HELCOM core indicator report. Online. 30.6.2020, <u>https://HELCOM.fi/wp-content/uploads/2019/08/Metals-HELCOM-core-indicator-2018.pdf</u>

HELCOM 2018c. Perfluorooctane sulphonate (PFOS). HELCOM core indicator report. Online. 30.6.2020, <u>https://HELCOM.fi/wp-content/uploads/2019/08/Perfluorooctane-</u> sulphonate-PFOS-HELCOM-core-indicator-2018.pdf

HELCOM 2018d. Tributyltin TBT and imposex. HELCOM core indicator report. Online. 30.6.2020, <u>https://HELCOM.fi/wp-content/uploads/2019/08/Tributyltin-TBT-and-imposex-HELCOM-core-indicator-2018.pdf</u>

HELCOM 2018e. Diclofenac. HELCOM pre-core indicator report. Online. 30.6.2020, <u>https://HELCOM.fi/wp-content/uploads/2019/08/Diclofenac-HELCOM-pre-core-indicator-2018.pdf</u>

HELCOM 2018f. HELCOM Thematic assessment of hazardous substances 2011-2016. Supplementary report to the HELCOM 'State of the Baltic Sea' report.

HELCOM 2018g. Inputs of hazardous substances to the Baltic Sea. Baltic Sea Environment Proceedings No. 161

HELCOM 2018h. Polyaromatic hydrocarbons (PAHs) and their metabolites. HELCOM core indicator report

HELCOM 2018i. Radioactive substances: Cesium-137 in fish and surface seawater. HELCOM core indicator report

Johansson, J. and Undeman, E. 2020. Perfluorooctane sulfonate (PFOS) and other perfluorinated alkyl substances (PFASs) in the Baltic Sea – Sources, transport routes and trends. HELCOM Baltic Sea Environment Proceedings n°173

McLachlan, M. & Undeman, E. 2020. Dioxins and PCBs in the Baltic Sea. HELCOM Baltic Sea Environment Proceedings n°171

Sobek, A., Bejgarn, S., Ruden, C., & Breitholtz, M. 2016. The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards. Environmental Science: Processes & Impacts, 18(8), 1042-1049.

Undeman, E. 2020. Diclofenac in the Baltic Sea – Sources, transport routes and trends. HELCOM Baltic Sea Environment Proceedings n°170 Undeman, E. and Johansson, J. 2020. Polybrominated diphenyl ethers (PBDEs) in the Baltic Sea – Sources, transport routes and trends. HELCOM Baltic Sea Environment Proceedings n°172

UNESCO and HELCOM. 2017. Pharmaceuticals in the aquatic environment of the Baltic Sea region – A status report. UNESCO Emerging Pollutants in Water Series – No. 1, UNESCO Publishing, Paris.

WHO 2008. Guidance for identifying populations at risk from mercury exposure. UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases, Geneva, Switzerland

SOM report series

HELCOM ACTION 2021a. Sufficiency of existing measures to achieve good status in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MainSOMReport</u>

HELCOM ACTION 2021b. Methodology for the sufficiency of measures analysis. Available at: http://www.helcom.fi/SOM/MethodologyReport

HELCOM ACTION 2021c. A practical guide to interpreting the SOM results. Available at: http://www.helcom.fi/SOM/PracticalGuide

HELCOM ACTION 2021d. Sufficiency of existing measures for benthic habitats in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/BenthicHabitatsReport</u>

HELCOM ACTION 2021e. Sufficiency of existing measures for coastal fish in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/CoastalFishReport</u>

HELCOM ACTION 2021f. Sufficiency of existing measures for commercial fish in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/CommercialFishReport</u>

HELCOM ACTION 2021g. Sufficiency of existing measures for hazardous substances in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/HazardousSubstancesReport</u>

HELCOM ACTION 2021h. Sufficiency of existing measures for input of nutrients in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/NutrientsReport</u>

HELCOM ACTION 2021i. Sufficiency of existing measures for marine litter in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MarineLitterReport</u>

HELCOM ACTION 2021j. Sufficiency of existing measures for marine mammals in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MarineMammalsReport</u>

HELCOM ACTION 2021k. Sufficiency of existing measures for migratory fish in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/MigratoryFishReport</u>

HELCOM ACTION 2021I. Sufficiency of existing measures for non-indigenous species in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/NISReport</u>

HELCOM ACTION 2021m. Sufficiency of existing measures for underwater noise in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/UnderwaterNoiseReport</u>

HELCOM ACTION 2021n. Sufficiency of existing measures for waterbirds in the Baltic Sea. Available at: <u>http://www.helcom.fi/SOM/WaterbirdsReport</u>

HELCOM ACTION 20210. Sufficiency and cost-effectiveness of potential new measures to achieve good status in the Baltic Sea. Available at: http://www.helcom.fi/SOM/CostEffectivenessReport

Model code is available at: <u>https://github.com/LiisaSaikkonen/ACTION_SOM</u>

Annexes

Annexes 1–9 contain the expert surveys as well as information on the measure types and the literature review. They are available on the <u>SOM Platform workspace</u>.

Annexes 10–12 contain graphs and tables that provide additional information and perspectives on the results.

Annex 1 Activity-pressure input survey template

Excel used as a template for receiving data for the activity-pressure input survey.

Annex 2 Modified activity list (if modified)

The topic uses the standard activity list, so no modified activity list is available.

Annex 3 Measure types list

PDF containing the measure types used in the assessment of the effectiveness of measures for *Hazardous substances*. Document includes examples of existing measures that if implemented would be included in the corresponding measure type.

Annex 4 Linking existing measures to measure types

Excel containing the identified existing measures and their relationship to the measure types used in the SOM analysis.

Annex 5 Literature review search terms

Excel containing the search terms used during the literature review on effectiveness of measures for *Hazardous substances*.

Annex 6 Literature review summary

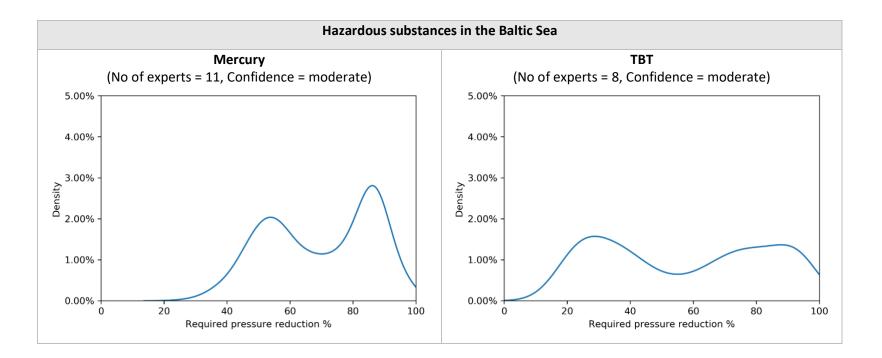
Excel document containing the effectiveness of measures data retrieved from the literature review.

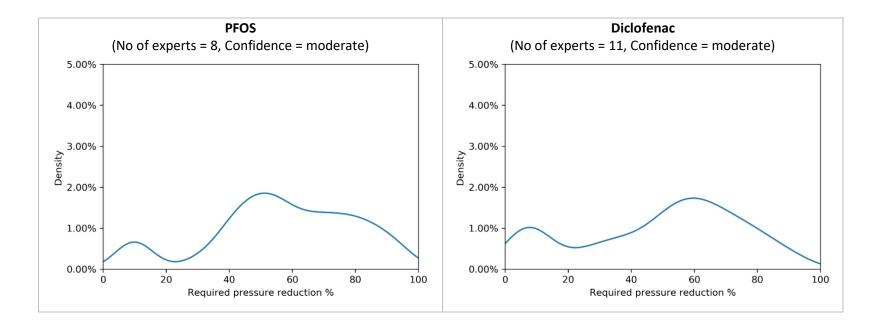
Annex 7 Topic structure

Excel containing the relationships between measure types, activities, pressure inputs, state components, and sub-basins. Also contains information on GES thresholds.

Annex 8 Effectiveness of measures survey

PDF of the Effectiveness of measures survey for Hazardous substances.

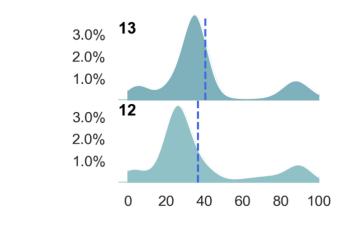

Annex 9 Pressure-state survey


PDF of the Pressure-state survey for Hazardous substances.

Annex 10 Supplementary results for required pressure reductions

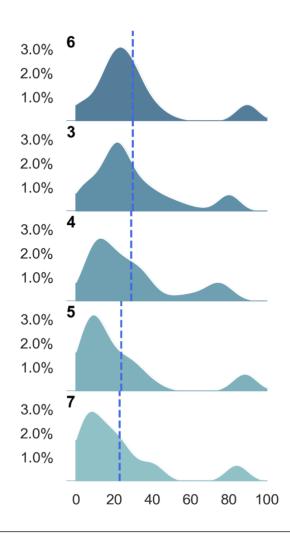
This annex presents the probability density functions of required pressure reductions to achieve GES based on responses to the expert survey. The graphs show the probability distribution of the pooled expert responses on how much pressures should be reduced to achieve GES for the substance in question. Pressure reduction is presented on the x-axis (0-100%) and probability density on the y-axis. The probability density function presents the probability of the pressure reduction falling within a particular range of values. This probability is given by the integral of the probability density over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range.

The graphs have multiple peaks and the distributions are wide, which indicate that expert have varying views on the pressure reductions required to achieve GES, and there is uncertainty in the evaluations.

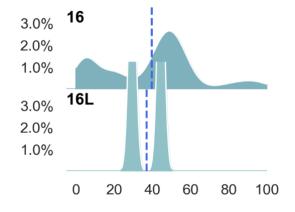


Annex 11 Supplementary results for effectiveness of measures

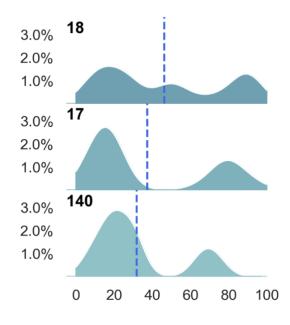
Table A1. Distribution of the effectiveness of measure types in reducing the *input of mercury*. The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.

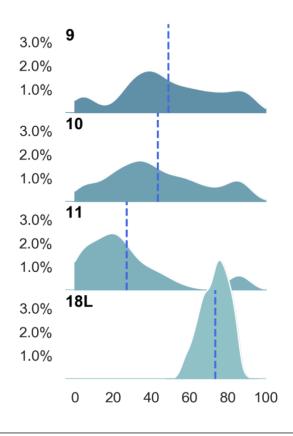

Pressure:	Input of mercury
Activity:	Non-renewable energy generation (fossil fuel and nuclear powerplants)
Measure-type:	1: Local/state/national targets to eliminate coal fired energy production
	2: Continued application of the EU Emissions Trading System
Expert assessment:	7 experts, confidence = moderate
	3.0% 1
	2.0%
	1.0%
	3.0% 2
	2.0%
	1.0%
	0 20 40 60 80 100

Pressure:	Input of mercury
Activity:	Transport – land (cars and trucks, trains), including infrastructure
Measure-type:	13: Increased electrification of transportation fleets
	12: Increased fuel efficiency standards
Expert assessment:	7 experts, confidence = low-high



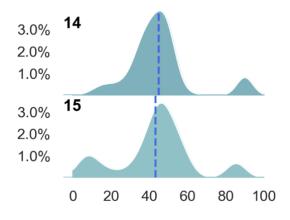
Pressure:	Input of mercury
Activity:	Industrial uses (oil, gas, industrial plants)
Measure-type:	6: Ban on manufacturing processes where mercury is used as an electrode (e.g. in chlor-alkali production; Na or K methylate/ethylate production)
	3: Updated EU mercury storage regulation
	4: Sand capping or removal of existing cellulose deposits
	5: Ban on manufacturing processes where mercury or mercury compounds are used as a catalyst (e.g. In vinyl chloride monomer production)
	7: Ban on export of Mercury (II) sulphate (HgSO4, CAS RN 7783-35-9) and Mercury (II) nitrate (Hg(NO3)2, CAS RN 10045-94-0)


Expert assessment: 6-7 experts, confidence = low


Pressure:	Input of mercury
Activity:	Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)
Measure type:	16: EU mandatory use of dental amalgam separators retaining at least 95% of amalgam particles
	16L: EU mandatory use of dental amalgam separators retaining at least 95% of amalgam particles (literature based)
Expert assessment:	7 experts, confidence = moderate-high

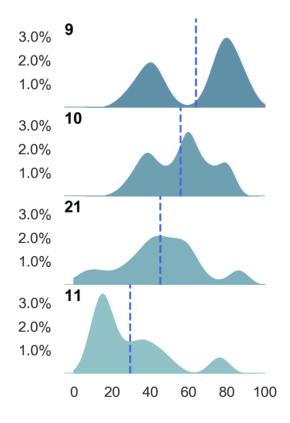
Pressure:	Input of mercury
Activity:	Solid waste (e.g. land-based disposal of dredged material, landfill, solid waste streams)
Measure type:	18: Further restrictions on storage and disposal of waste/dredged material containing mercury
	17: 5% increase in EU mandatory WEEE recycling levels
	140: Eurasian Economic Union restrictions on hazardous substances in electrical products
Expert assessment:	5-6 experts, confidence = moderate

Pressure:	Input of mercury
Activity:	Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
Measure type:	9: Reduce re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations
	10: Tighter allowed contamination levels during dredging activities
	11: Perform dredging under conditions (low water pH and temperature) that lower desorption from sediments, i.e. Preferable during winter
	18L: Further restrictions on storage and disposal of waste/dredged material containing mercury (literature based)
Expert assessment:	7 experts, confidence = moderate



Pressure:	Input of mercury
Activity:	Activities and sources outside the Baltic Sea Region

Measure type: 14: Minamata convention


15: Paris agreement

Expert assessment: 7 experts, confidence = moderate

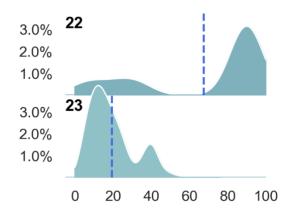
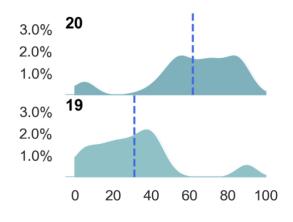
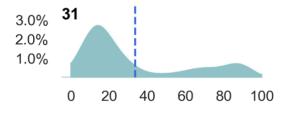


Table A2. Distribution of the effectiveness of measure types in controlling the *input of TBT*. The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.


Pressure:	Input of TBT
Activity:	Restructuring of seabed morphology (dredging, beach replenishment, sea-based deposit of dredged material)
Measure type:	9: Reduce re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations
	10: Tighter allowed contamination levels during dredging activities
	21: Implement technologies for the degradation of TBT from sediment (e.g. chemical oxidation, bioremediation)
	11: Perform dredging under conditions (low water pH and temperature) that lower desorption from sediments, i.e. Preferable during winter
Expert assessment:	6 experts, confidence = moderate

Pressure:	Input of TBT
Activity:	Tourism and leisure activities (boating, beach use, water sports, etc.)
Measure type:	22: Boat washing restrictions
Measure type:	23: Monitoring of tin in leisure boat hulls
Expert assessment:	6 experts, confidence = moderate



Pressure:	Input of TBT
Activity:	Transport – shipping (incl. anchoring, mooring)
Measure type:	20: In water hull cleaning regulation
	19: Restrictions on anchoring zones in highly contaminated areas
Expert assessment:	6 experts, confidence = high

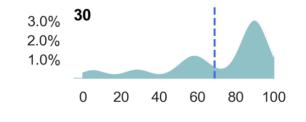
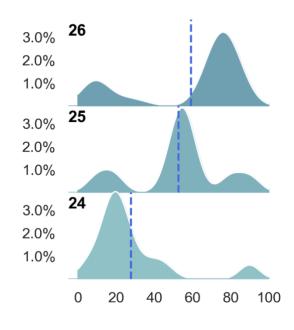
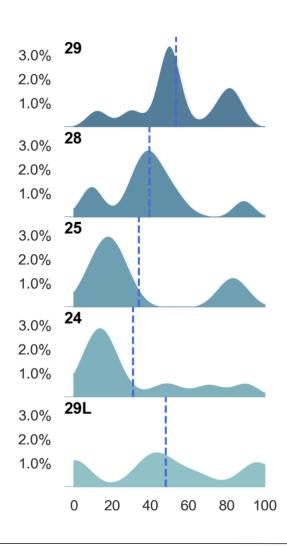


Table A3. Distribution of the effectiveness of measure types in controlling the *input of PFOS.* The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.

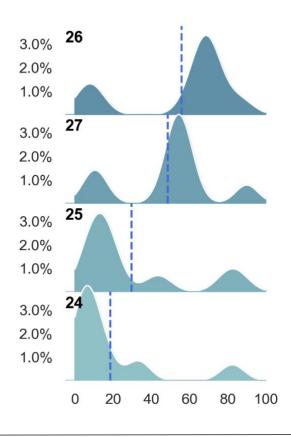
Pressure:	Input of PFOS
Activity:	Transport – air, including infrastructure
Measure type:	31: Stockholm convention ban on PFOS in aviation hydraulic fluid
Expert assessment:	8 experts, confidence = moderate



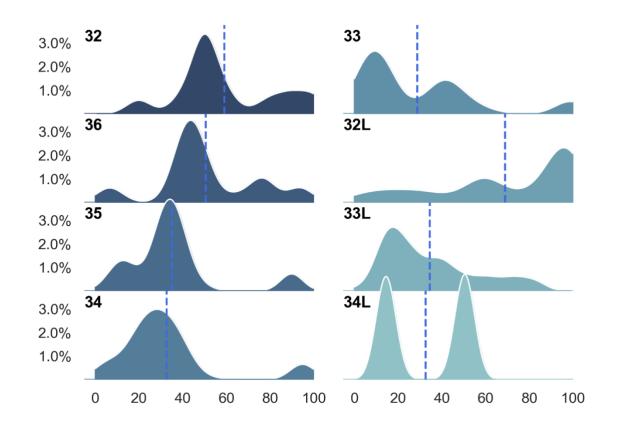
Pressure:	Input of PFOS
Activity:	Urban uses (land use), including storm water runoff
Measure type:	30: Stockholm convention ban on PFOS fire-fighting foams
Expert assessment:	7 experts, confidence = moderate
•	



Pressure:	Input of PFOS
Activity:	Industrial uses (oil, gas, industrial plants)
Measure type:	26: Clean-up of contaminated sites
	25: Stockholm convention PFOS lists no accepted uses or exemptions
	24: Stockholm convention PFOS accepted use and specific exemptions limited to: insect baits, metal plating in a closed loop, fire-fighting foams
_	


Expert assessment: 7 experts, confidence = moderate

Pressure:	Input of PFOS
Activity:	Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)
Measure type:	29: Implement technologies to remove PFOS from wastewater (e.g. activated carbon or high-pressure membrane systems)
	28: Limits on PFOS concentrations in sludge used in commercial applications
	25: Stockholm convention PFOS lists no accepted uses or exemptions
	24: Stockholm convention PFOS accepted use and specific exemptions limited to: insect baits, metal plating in a closed loop, fire-fighting foams
	29L: Implement technologies to remove PFOS from wastewater (e.g. activated carbon or high-pressure membrane systems) (literature based)
Expert assessment:	5-6 experts, confidence = moderate



Pressure:	Input of PFOS
Activity:	Solid waste (e.g. land-based disposal of dredged material, landfill, solid waste streams)
Measure type:	26: Clean-up of contaminated sites
	27: Restoration/upgrading of old landfill sites
	25: Stockholm convention PFOS lists no accepted uses or exemptions
	24: Stockholm convention PFOS accepted use and specific exemptions limited to: insect baits, metal plating in a closed loop, fire-fighting foams
Expert assessment:	5-6 experts, confidence = moderate

Table A4. Distribution of the effectiveness of measure types in controlling the *input of diclofenac.* The effectiveness of a measure type is the percent reduction in a pressure resulting from a specific activity. The graphs present the probability distribution of effectiveness, based on expert responses or literature estimates. The dashed line represents the expected value. Figures showing only a dashed line and no apparent probability distribution are point estimates without variation.

Pressure:	Input of diclofenac
Activity:	Waste waters (urban, industrial, and industrial animal farms; includes all waste streams entering wastewater systems e.g. microplastics, pharmaceuticals, etc.)
Measure type:	32: Technical upgrade of wastewater treatment plants: e.g. granular activated carbon (GAC) adsorption, ozonation, UV light, nanofiltration etc.
	36: Alter prescription practices to lower consumption (drug dosage, pack size, alternative medicine, convert OTC access to prescription)
	35: Increase public awareness of pharmaceutical take-back schemes
	34: Improved pharmaceutical take-back schemes
	33: Improved application of existing WWT technologies (e.g. increasing the sludge retention time, use of both nitrification and denitrification treatment steps)
	32L: Technical upgrade of wastewater treatment plants: e.g. granular activated carbon (GAC) adsorption, ozonation, UV light, nanofiltration etc. (literature based)
	33L: Improved application of existing WWT technologies (e.g. increasing the sludge retention time, use of both nitrification and denitrification treatment steps) (literature based)
	34L: Improved pharmaceutical take-back schemes (literature based)
Expert assessment:	7 experts, confidence = high

Annex 12 Impacts of measure types

Table A5. Impacts of measure types (%) in reducing the input of mercury, TBT, PFOS and diclofenac. The impact shows how much the measure type reduces the pressure input across all activities contributing to the pressure input.

Substance	Measure type	Impact of measure type (%) Mean (standard deviation)
Mercury	Local/state/national targets to eliminate coal fired energy production	18 (16)
	Minamata convention	14 (12)
	Paris agreement	13 (12)
	Continued application of the EU Emissions Trading System	9 (9)
	Updated EU mercury storage regulation	3 (6)
	Sand capping or removal of existing cellulose deposits	3 (6)
	Reduce re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations	3 (6)
	Ban on manufacturing processes where mercury is used as an electrode (e.g. in chlor-alkali production; Na or K methylate/ethylate production	3 (6)
	Ban on manufacturing processes where mercury or mercury compounds are used as a catalyst (e.g. In vinyl chloride monomer production	3 (6)
	Further restrictions on storage and disposal of waste/dredged material containing mercury	3 (5)
	Tighter allowed contamination levels during dredging activities	3 (4)
	Ban on export of Mercury (II) sulphate (HgSO4, CAS RN 7783-35-9) and Mercury (II) nitrate (Hg(NO3)2, CAS RN 10045-94-0)	3 (6)
	5% increase in EU mandatory WEEE recycling levels	2 (4)
	Eurasian Economic Union restrictions on hazardous substances in electrical products	2 (4)
	Perform dredging under conditions (low water pH and temperature) that lower desorption from sediments, i.e. Preferable during winter	2 (3)
	EU mandatory use of dental amalgam separators retaining at least 95% of amalgam particles	0 (0)
TBT	Reduce re-suspension from sediments, by limiting restructuring of seabed to areas with low concentrations	15 (17)
	Tighter allowed contamination levels during dredging activities	13 (14)
	Implement technologies for the degradation of TBT from sediment (e.g. chemical oxidation, bioremediation)	11 (12)
	Perform dredging under conditions (low water pH and temperature) that lower desorption from sediments, i.e. Preferable during winter	7 (9)
	In water hull cleaning regulation	2 (4)
	Boat washing restrictions	2 (4)
	Restrictions on anchoring zones in highly contaminated areas	1 (2)
	Monitoring of tin in leisure boat hulls	1(1)
PFOS	Clean-up of contaminated sites	18 (11)
	Stockholm convention PFOS lists no accepted uses or exemptions	16 (11)
	Restoration/upgrading of old landfill sites	14 (9)
	Stockholm convention PFOS accepted use and specific exemptions limited to: insect baits, metal plating in a closed loop, fire-fighting foams	12 (11)

Substance	Measure type	Impact of measure type (%) Mean (standard deviation)
	Implement technologies to remove PFOS from wastewater (e.g. activated carbon or high-pressure membrane systems)	10 (8)
	Limits on PFOS concentrations in sludge used in commercial applications	7 (7)
	Stockholm convention ban on PFOS fire-fighting foams	7 (8)
	Stockholm convention ban on PFOS in aviation hydraulic fluid	1 (1)
Diclofenac	Technical upgrade of wastewater treatment plants: e.g. granular activated carbon (GAC) adsorption, ozonation, UV light, nanofiltration etc	30 (20)
	Alter prescription practices to lower consumption (drug dosage, pack size, alternative medicine, convert OTC access to prescription)	26 (17)
	Increase public awareness of pharmaceutical take-back schemes	18 (13)
	Improved pharmaceutical take-back schemes	17 (14)
	Improved application of existing WWT technologies (e.g. increasing the sludge retention time, use of both nitrification and denitrification treatment steps)	16 (17)

Data used: activity-pressure input contributions, effectiveness of measure types