Nitrogen emissions to the air in the Baltic Sea area

HELCOM Baltic Sea Environment Fact Sheet (BSEFS), 2020

Author: Michael Gauss, EMEP MSC-W

Key Message

In all HELCOM Contracting Parties, *oxidized* nitrogen emissions were lower in 2018 than in 1995, with the largest reductions in Denmark (64%), followed by Finland (53%), Sweden (50%) and Germany (45%).

For *reduced* nitrogen (ammonia), annual emissions were lower in 2018 than in 1995 in seven out of the nine HELCOM Contracting Parties, with the largest reductions in Denmark (29%), followed by Poland (13%) and Sweden (13%). In Russia, ammonia emissions increased from 1995 to 2018 by 9%. A special case this year is Lithuania, because the officially reported national totals changed substantially from the 2019 to the 2020 data submissions. According to the 2020 official data submission, ammonia emissions from Lithuania would have increased by 8% from 1995 to 2018. More details will be given below.

In most HELCOM Contracting Parties, *total* nitrogen emissions were lower in 2018 than in 1995, with the largest reductions in Denmark (46%), followed by Finland (41%) and Sweden (35%).

Results and Assessment

Relevance of the BSEFS for describing developments in the environment

This indicator shows the levels and trends of annual nitrogen oxides and ammonia emissions from anthropogenic sources included in the calculation of the deposition on the Baltic Sea. The sources include emissions from HELCOM Countries, Baltic and North Sea shipping and from other sources outside HELCOM area.

Policy relevance and policy references

The HELCOM Copenhagen Ministerial Declaration of 2013 on taking further action to implement the Baltic Sea Action Plan reconfirmed the need of reaching good environmental status for a healthy Baltic Sea. The declaration includes nutrient reduction targets, and thus also concerns airborne nitrogen input to the Baltic Sea. The Declaration sets targets on Maximum Allowed Inputs (MAI) covering both water- and airborne inputs.

The relevant policy to the control of emissions of nitrogen oxides and ammonia to the atmosphere on a global scale is set in the framework of the UN ECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). For EU member states the policy frame is set by the EU NEC and IED Directives. For the Russian Federation the corresponding policy frame is embraced by Federal Acts on Environment Protection and the Protection of Atmospheric Air. The Gothenburg Protocol (1999, and revised in 2012) requires that nitrogen oxides emissions in 2020 be reduced by between 18% and 56% in 31 countries with respect to 2005 annual emissions, with the largest relative reductions in Denmark (56%), the United Kingdom (55%) and France (50%). Ammonia emissions will also be reduced, but by smaller percentages (1% to 24%). The largest relative reductions of ammonia emissions will be in Denmark (24%), Finland (20%) and Sweden (15%). In the European Union, the revised Gothenburg Protocol is implemented by the EU NEC Directive 2016/2284/EU,

which sets 2020 and 2030 emission reduction commitments for five main air pollutants, including nitrogen oxides and ammonia.

Assessment

In this fact sheet we present and discuss nitrogen emission data as used in the EMEP MSC-W model calculations performed for the 1995-2018 period. For all years, the gridded distributions of emissions have been provided by the EMEP Centre on Emission Inventories and Projections (CEIP) on 0.1° x 0.1° resolution. Details about the methods of gridding and gap-filling emission data done by CEIP can be found in the EMEP status report 1/2020 (EMEP, 2020, their section 3.7), which is publicly available on the web.

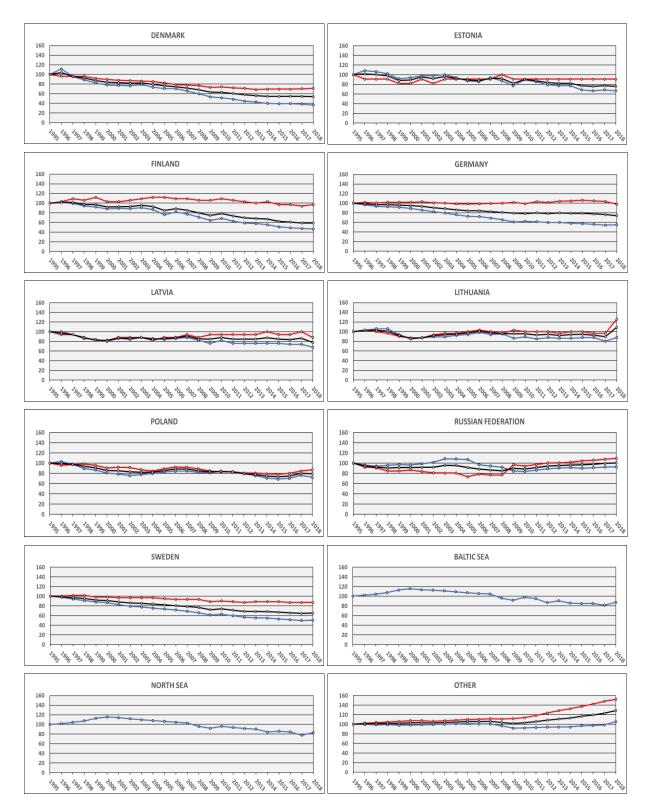
The gridded emission data used in the EME MSC-W model calculations are available on CEIP's WebDab at: <u>http://www.ceip.at/webdab_emepdatabase/emissions_emepmodels</u>. For the years 1995-2017 these data are based on the 2019 official data submissions to CEIP as of February 2019, hereafter referred to as *CEIP19*. Emission data for 2018 were not available in CEIP19 and are therefore based on the new (2020) official data submissions to CEIP as of February 2020, hereafter referred to as *CEIP20*.

According to the work plan of the EMEP Programme, not all historical years of the trend period (starting in the 1990s) are gridded and gap-filled every year. Therefore, having to rely on data based on different data submissions is not unusual and in most cases does not lead to any major inconsistencies. However, this year two issues should be mentioned: 1) In CEIP20, ammonia emissions from Lithuania are clearly larger than in CEIP19. The increase between 1995 (based on CEIP19) and 2018 (based on CEIP20) shown in the figures and tables below is thus rather large: 26%. The increase based on the officially reported national totals is only 8%¹. 2) Ship emissions are about 4% larger in CEIP20 than in CEIP19 (averaged over the 2000-2017 period).

Time series of nitrogen oxides and ammonia annual emissions in the period 1995 – 2018, as used in the EMEP MSC-W model calculations, are shown for all HELCOM Contracting Parties in Figure 1. The figure also shows emissions from shipping in the North Sea and the Baltic Sea shipping, as well as all other sources within the EMEP MSW-W model domain. Time series of nitrogen oxides, ammonia and total nitrogen annual emissions, expressed as percentage of 1995 emissions, are shown for the same period in Figure 2. As usual, emissions from Russia are included only for that part of Russia that is included in the EMEP MSW-W model domain.

In most HELCOM Contracting Parties, emissions of total nitrogen have been decreasing during the period 1995 – 2018. The reduction of emissions from the Baltic Sea region in the years 1995 – 2018 is more significant for nitrogen oxides than for ammonia: In all HELCOM Contracting Parties, oxidized nitrogen emissions are by 7 to 64% lower in 2018 than in 1995, with the largest reductions in Denmark (64%), followed by Finland (53%), Sweden (50%), and Germany (45%). Reductions with respect to 1995 are also reported for all the other HELCOM Contracting parties: Estonia (33%), Latvia (32%), Poland (28%), Lithuania (12%), and Russia (7%). Oxidized nitrogen emissions from international shipping have been reduced since 1995 both in the North Sea (17%) and in the Baltic Sea (12%).

For ammonia, the emissions from seven out of nine HELCOM Contracting Parties were lower in 2018 than in 1995, with the largest reductions in Denmark (29%), followed by Poland (13%), Sweden (13%), and Latvia (12%). Reductions with respect to 1995 are also seen for Estonia (9%), Finland (3%), and Germany (2%), while Lithuania and Russia have increased their ammonia emissions (by 26% and 9%, respectively). As indicated above, the large increase in the percentage for Lithuania is partly due to the revision of reported emissions.


¹ Basing all tables and figures showing historical years on officially reported national totals was not considered as these data are neither gap-filled nor quality-controlled by EMEP, and neither are they available for all HELCOM Contracting Parties. Furthermore, they would not be consistent with the model calculations of nitrogen depositions, for which only gap-filled and quality-controlled emissions from CEIP are used.

According to the officially reported national total revised in 2020, the increase from 1995 to 2018 in Lithuania would amount to 8%. However, these data have neither been gap-filled nor gridded for model calculations yet. It is assumed that a new version of gridded emission data for historical years, based on 2020 reported emissions, will be available for modelling next year (2021).

It is worth noting that the sum of ammonia sources *outside* the HELCOM Contracting Parties has increased by 52% from 1995 to 2018, causing a total nitrogen emission increase of 29% from there. Due to the relatively short lifetime of reduced nitrogen in the atmosphere, this does not have a large impact on the Baltic Sea. However, trends in ship emissions of nitrogen oxides within the North Sea and Baltic Sea are more relevant. As emissions from international shipping are not reported by the Parties to the UN ECE LRTAP Convention, these emissions are derived by the EMEP Centre CEIP using the CAMS global ship emission dataset (Granier et al., 2019), which starts in year 2000 and was developed by the Finnish Meteorological Institute. Ship emissions for years before 2000 are estimated using CAMS global shipping emissions for 2000, adjusted with trends for global shipping from EDGAR v.4.3.2 (JRC/PBL 2016). As in the case of land-based emissions, emissions for the historical years 1995-2017 have not been regridded by CEIP for EMEP MSC-W model calculations in 2020. Thus, nitrogen emissions and depositions reported in this year for 1995-2017 are based on the 2019 version of CAMS, while the results for 2018 are based on the 2020 version.

Figure 1. Annual atmospheric emissions of nitrogen oxides (NOx, blue) and ammonia (NH₃, red) from HELCOM Contracting Parties, international shipping (North Sea and Baltic Sea), and from other sources within the EMEP MSC-W model domain from 1995 to 2018. Unit: ktonnes(N)/year. Different vertical scales are used for the various sources. The data cover emissions from entire countries, except for Russia, where only emissions from the area covered by EMEP are included. Emission data plotted for 1995 to 2017 are based on last year's official submissions from EMEP countries (i.e. they are the same as in the BSEFS published last year), while emission data for 2018 are updated according to this year's (2020) submissions. See text for more details.

Figure 2. Trends in annual atmospheric emissions of nitrogen oxides (NOx, blue), ammonia (NH₃, red) and total nitrogen (NOx+ NH₃, black) from HELCOM Contracting Parties, international shipping (North Sea and Baltic Sea), and from other sources within the EMEP MSC-W model domain from 1995 to 2018, plotted as percentage of the 1995 value. Unit: %. Different vertical scales are used for the various sources. The data cover emissions from entire countries, except for Russia, where only emissions from the area covered by EMEP are included. Emission data plotted for 1995 to 2017 are based on last year's official submissions from EMEP countries, while emission data for 2018 are updated according to this year's (2020) submissions. See text for more details.

References

EMEP, 2020: EMEP Status Report 1/2020. "Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components" Joint MSC-W & CCC & CEIP Report. Link for direct download: <u>https://emep.int/publ/reports/2020/EMEP Status Report 1 2020.pdf</u>

Granier, C., Darras, S., Denier van der Gon, H., Doubalova, J., Elguindi, N., Galle, B., Gauss, M., Guevara, M., Jalkanen, J.-P., Kuenen, J., Liousse, C., Quack, B., Simpson, D., and Sindelarova, K.: The Copernicus Atmosphere Monitoring Service global and regional emissions (April 2019 version), doi:10.24380/d0bn-kx16, Link for direct download: <u>https://atmosphere.copernicus.eu/sites/default/files/2019-06/cams emissions general document apr2019 v7.pdf</u>.

JRC/PBL: Emission Database for Global Atmospheric Research (EDGAR), Global Emissions EDGAR v4.3.1, European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), URL <u>http://edgar.jrc.ec.europa.eu</u>, 2016.

Data

Veer	DK			DE					SE	Sum	Shipping		Other
Year	DK	EE	FI	DE	LV	LT	PL	RU		HELCOM	BAS	NOS	Other
1995	88.6	14.6	83.1	664	15.2	20.1	320	1064	76.1	2346	107	239	5953
1996	98.9	15.8	84.3	642	15.2	20.7	330	1023	74.6	2305	110	243	5927
1997	84.6	15.5	82.5	623	14.3	21.3	313	1000	71.5	2226	112	250	5890
1998	78.5	14.9	78.2	615	13.1	21.3	287	1018	69.1	2196	115	257	5904
1999	73.0	13.4	76.7	607	12.8	18.9	278	1037	67.0	2184	121	269	5844
2000	69.1	13.7	73.3	592	12.2	17.0	259	1023	65.7	2125	124	276	5864
2001	68.5	14.3	74.3	569	13.1	17.7	252	1052	62.7	2123	122	272	5893
2002	67.6	14.3	73.7	545	12.8	18.0	243	1080	60.3	2115	121	267	5914
2003	70.0	14.6	75.5	528	13.4	18.0	249	1157	59.0	2185	119	262	5962
2004	65.1	13.7	72.1	505	13.1	18.6	256	1151	57.2	2151	117	258	6003
2005	62.7	12.8	63.3	482	12.8	18.9	264	1140	56.0	2113	115	254	6040
2006	62.4	12.5	68.2	479	13.1	19.8	271	1031	54.5	2011	113	250	5995
2007	57.8	13.7	64.2	458	13.4	18.9	272	1006	52.3	1955	112	246	5985
2008	53.0	12.8	59.0	435	12.5	19.2	263	978	49.9	1882	103	229	5750
2009	47.2	11.3	53.6	405	11.6	17.3	261	899	46.6	1752	98.3	220	5471
2010	45.7	13.1	56.9	413	12.5	18.0	270	892	47.8	1769	105	230	5492
2011	42.9	12.5	52.0	408	11.6	17.0	265	920	45.3	1775	102	224	5547
2012	39.6	11.6	49.0	398	11.6	17.7	254	950	42.9	1774	93.1	219	5593
2013	38.0	11.3	48.1	398	11.6	17.3	242	965	42.0	1774	97.4	216	5616
2014	35.3	11.3	46.0	387	11.6	17.3	227	972	41.7	1750	92.2	201	5604
2015	34.7	10.0	42.3	380	11.6	17.7	221	960	40.2	1717	91.0	205	5771
2016	35.0	9.7	40.8	373	11.3	17.7	226	969	39.0	1721	91.3	201	5800
2017	34.1	10.0	39.6	362	11.3	16.1	245	986	37.7	1741	87.3	185	5875
2018	32.3	9.74	38.7	366	10.3	17.7	232	987	38.3	1732	94.0	199	6283

Table 1. National total emissions of nitrogen oxides from HELCOM Contracting Parties, international shipping (NOS:North Sea, and BAS: Baltic Sea), and from other sources within the EMEP MSC-W model domain in the period 1995 –2018, as used in the EMEP MSC-W model calculations of nitrogen deposition. Unit: ktonnes(N)/year.

Year	DK	EE	FI	DE	LV	LT	PL	RU	SE	Sum HELCOM	Other
1995	88.9	9.06	27.2	534	14.0	25.5	301	920	50.2	1970	5830
1996	85.6	8.24	28.0	544	13.2	26.4	287	849	50.2	1892	5970
1997	85.6	8.24	29.6	538	13.2	25.5	292	837	51.1	1880	6053
1998	85.6	8.24	28.8	545	12.4	24.7	296	779	51.1	1831	6090
1999	81.5	7.41	30.5	545	11.5	23.1	287	779	49.4	1815	6184
2000	79.9	7.41	28.0	545	11.5	22.2	273	796	49.4	1813	6272
2001	78.2	8.24	28.0	551	12.4	22.2	277	771	48.6	1796	6284
2002	77.4	7.41	28.8	539	12.4	23.9	275	745	48.6	1757	6186
2003	76.6	8.24	29.6	536	12.4	24.7	262	740	48.6	1738	6261
2004	75.8	8.24	30.5	527	11.5	24.7	254	742	48.6	1722	6316
2005	73.3	8.24	30.5	527	12.4	25.5	267	674	47.8	1665	6414
2006	70.0	8.24	29.6	529	12.4	26.4	278	724	46.9	1724	6427
2007	69.2	8.24	29.6	532	13.2	25.5	277	708	46.9	1710	6500
2008	68.4	9.06	28.8	534	12.4	24.7	267	707	46.9	1699	6466
2009	65.1	8.24	28.8	544	13.2	26.4	254	891	44.5	1876	6516
2010	65.9	8.24	29.6	528	13.2	25.5	250	867	45.3	1832	6637
2011	64.2	8.24	28.8	553	13.2	25.5	250	895	44.5	1883	6904
2012	63.4	8.24	28.0	543	13.2	25.5	242	922	43.6	1889	7205
2013	60.9	8.24	27.2	558	13.2	24.7	242	925	44.5	1903	7479
2014	61.8	8.24	28.0	559	14.0	25.5	238	936	44.5	1916	7707
2015	61.8	8.24	26.4	567	13.2	25.5	235	961	44.5	1943	7992
2016	61.8	8.24	26.4	561	13.2	24.7	240	972	43.6	1951	8279
2017	62.6	8.24	25.5	554	14.0	24.7	254	992	43.6	1978	8622
2018	63.4	8.24	26.4	524	12.4	32.1	261	1006	43.6	1976	8870

Table 2. National total emissions of ammonia from HELCOM Contracting Parties and from other sources within the EMEP MSC-W model domain in the period 1995 – 2018, as used in the EMEP MSC-W model calculations of nitrogen deposition. Unit: ktonnes(N)/year.

Voor				DE				вц	SE	Sum	Shipping		Other
Year	DK	EE	FI	DE	LV	LT	PL	RU		HELCOM	BAS	NOS	Other
1995	178	23.7	110	1198	29.2	45.6	621	1984	126	4316	107	239	11783
1996	185	24.1	112	1186	28.4	47.0	617	1872	125	4196	110	243	11897
1997	171	23.8	112	1160	27.5	46.8	606	1836	123	4106	112	250	11943
1998	164	23.1	107	1161	25.4	46.0	582	1797	120	4026	115	257	11994
1999	155	20.8	107	1153	24.3	41.9	566	1816	116	3999	121	269	12028
2000	149	21.1	101	1137	23.7	39.3	532	1819	115	3938	124	276	12136
2001	147	22.5	102	1119	25.4	39.9	529	1822	111	3919	122	272	12177
2002	145	21.7	103	1084	25.1	41.8	518	1825	109	3872	121	267	12099
2003	147	22.8	105	1064	25.7	42.7	511	1897	108	3923	119	262	12223
2004	141	21.9	103	1032	24.6	43.3	509	1893	106	3873	117	258	12319
2005	136	21.0	93.8	1009	25.1	44.4	531	1813	104	3778	115	254	12454
2006	132	20.7	97.8	1008	25.4	46.1	548	1754	101	3734	113	250	12422
2007	127	21.9	93.9	990	26.6	44.4	548	1714	99.3	3665	112	246	12485
2008	121	21.8	87.9	969	24.8	43.9	529	1686	96.9	3581	103	229	12216
2009	112	19.5	82.4	949	24.7	43.7	515	1790	91.0	3628	98.3	220	11987
2010	112	21.3	86.6	941	25.7	43.5	520	1759	93.1	3601	105	230	12128
2011	107	20.7	80.9	960	24.7	42.6	516	1815	89.8	3657	102	224	12451
2012	103	19.8	77.0	940	24.7	43.2	497	1872	86.6	3663	93.1	219	12798
2013	99.0	19.5	75.3	956	24.7	42.1	484	1890	86.5	3678	97.4	216	13096
2014	97.1	19.5	74.0	947	25.6	42.9	465	1908	86.2	3665	92.2	201	13312
2015	96.5	18.3	68.7	948	24.7	43.2	455	1921	84.6	3660	91.0	205	13762
2016	96.8	18.0	67.1	933	24.4	42.4	466	1941	82.6	3672	91.3	201	14079
2017	96.7	18.3	65.1	916	25.3	40.8	498	1977	81.4	3719	87.3	185	14498
2018	95.7	18.0	65.0	890	22.7	49.8	493	1993	82.0	3708	94.0	199	15153

Table 3. National total emissions of total nitrogen from HELCOM Contracting Parties, international shipping (NOS: North Sea, and BAS: Baltic Sea), and from other sources within the EMEP MSC-W model domain in the period 1995 – 2018, as used in the EMEP MSC-W model calculations of nitrogen deposition. Units: ktonnes(N)/year.

Metadata

Technical information

1. Source: EMEP Centre on Emission Inventories and Projections (CEIP).

2. Description of data: The gridded distributions of emissions have been provided by the EMEP Centre on Emission Inventories and Projections (CEIP). The emissions for the 1995-2017 period are derived from the 2019 official data submissions to UNECE CLRTAP as of February 2019, while emissions for 2018 are derived from the 2020 official data submissions to UNECE CLRTAP as of February 2020.

3. Geographical coverage: EMEP domain covering Europe, parts of Asia and a part of the Atlantic Ocean.

4. Temporal coverage: Data on emissions of nitrogen oxides and ammonia are presented here for the period 1995 - 2018.

5. Methodology and frequency of data collection: National data on emissions are annually submitted by the Parties to the CLRTAP Convention to the UN ECE Secretariat. The methodology is based on a combination of emission measurements and emission estimates, based on activity data and emission factors. Submitted data undergo a QA/QC procedure and are stored in the WebDab database of the EMEP Centre for Emission inventories and Projections (CEIP) in Vienna, Austria.

Quality information

6. Strengths and weaknesses: Strength: data on emissions are annually submitted, checked and stored in the CEIP database; Weaknesses: there are gaps in time series of national emissions, which have to be corrected by experts. Delays occur in updating historical emission data submitted by the EMEP Contracting Parties.

7. Uncertainty. No official information about the uncertainty of provided nitrogen emission data is available from CEIP.

8. Further work required: Further work on emission uncertainty is required.