Total and Regional Runoff to the Baltic Sea

Author: Johannes Johansson

Key message

The total runoff in 2014 was below the 1950 – 2013 mean value, as was the situation in 2013. When looking at the period from 1950 to present, alternating between dry and wet periods is common. It is only between 1980 and 1990 that the situation was somewhat different, when all values were above the mean value. The five year running mean has been increasing since 2004, but it went down with the 2013 and 2014 runoff. It is still above the long term mean value though.

The Gulf of Bothnia, the Gulf of Riga and the Baltic Proper all had a lower runoff in 2014 compared to the mean values, but for the Gulf of Finland the runoff was slightly above its mean value. The difference from the mean value was about -15% in the Gulf of Bothnia, +1% in the Gulf of Finland, -54% in the Gulf of Riga and -30% in the Baltic Proper (the negative sign indicate lower runoff compared to the mean value). When looking at the entire Baltic Sea, the difference from the mean value was -17%, hence the general runoff for the entire area was lower compared to the long term mean of the annual runoff.

During the period 1950 – 2014, the total runoff to the Baltic Sea shows no long-term trend. This time period is characterised by dry and wet periods lasting for a couple of years to a decade generally following the NAO index.
Results and Assessment

Relevance of the indicator for describing developments in the environment

Runoff is a quantitative background indicator of the freshwater discharge, carrying the nutrients from the drainage areas to the coast. Runoff is an important parameter for the change of pressure of nutrient supply due to varying climate and climate change. Also change in land-use can influence runoff. To evaluate the change of pressure of nutrient supply to the Baltic region it is necessary to know the variability of runoff and normalise for this natural variability. Dry periods, like the one during the 70’s, can mask the marine eutrophication since the runoff was lower than average and hence also the total load of nutrients. Extended dry periods should also lead to a slight increase in surface layer salinity. During wet periods, the total nutrient load (pressure) increases, making marine eutrophication (effects) even worse.

The indicator shows the annual runoff from drainage areas integrated over the Baltic sub-regions. Runoff is governed by the precipitation - evaporation on land areas and is also influenced by air temperature. It is the sum of direct river and diffusive runoff. In all sub-regions a strong seasonal,
annual and decadal variability can be distinguished. Especially wet and dry periods are characterising the runoff. The 70’s was a fairly dry period compared with the 80’s and the later part of the 90’s. Geographically, the runoff is of about the same size in the Gulf of Finland and the Baltic Proper, whereas the Gulf of Riga contributes to a lesser extent and the Gulf of Bothnia to a larger extent to the total runoff.

Assessment

Four different sub basins are described by the deviation from their mean values based on runoff during 1950 to 2013. The mean values and the 2014 values are shown in each sub basin panel (Figure 1). Years with higher runoff compared to the mean value are displayed as red bars and lower values with blue bars. A five year running mean is displayed as a black line overlaying the bars in the figure. The sub basins are displayed in the centre of Figure 1 and the sub basins described are the Baltic Proper, the Gulf of Riga, the Gulf of Finland and the Gulf of Bothnia. A figure with the sum of the Baltic Sea sub basins is also included, partly to give an overview of the entire Baltic Sea and partly to compare the annual changes to the NAO index.

During the period 1950 – 2014, there is no obvious trend in the annual runoff, neither in the total runoff to the Baltic Sea area, nor in the sub-regions. Instead, this time period is characterised by dry and wet periods lasting for a couple of years to a decade. During 2014 the runoff were below mean values in all sub basins except in the Gulf of Finland, see Table 1.

Table 1. 2014 runoff values [m3s$^{-1}$] are compared to the 1950-2013 mean of the annual averages for the sub basins in the Baltic Sea and the difference in % are displayed.

<table>
<thead>
<tr>
<th>Sub Basin</th>
<th>Runoff 2014 [m3s$^{-1}$]</th>
<th>Mean runoff 1950-2013 [m3s$^{-1}$]</th>
<th>Difference from mean [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulf of Bothnia</td>
<td>5 141,4</td>
<td>6 026,2</td>
<td>-14,7</td>
</tr>
<tr>
<td>Gulf of Finland</td>
<td>3 605,5</td>
<td>3 576,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Gulf of Riga</td>
<td>463,5</td>
<td>1 008,6</td>
<td>-54,0</td>
</tr>
<tr>
<td>Baltic Proper</td>
<td>2 516,2</td>
<td>3 573,9</td>
<td>-29,6</td>
</tr>
<tr>
<td>Total Baltic Sea</td>
<td>11 726,6</td>
<td>14 184,6</td>
<td>-17,3</td>
</tr>
</tbody>
</table>

At times, there have been similar features in the changes of runoff values for all the sub basins. Other time periods, the changes are similar only in some of the sub basins. All the sub basins had low runoff values in the early to mid-70’s and higher in the end of the 90’s. In the Baltic Proper, the Gulf of Riga and the Gulf of Finland, there were high values from the mid 50’s to the beginning of the 60’s. In the Gulf of Bothnia, the Gulf of Riga and the Gulf of Finland, there was an episode of increasing values during the 80’s while in the Baltic Proper, there was a tendency of decreasing values. There were low values in the Baltic Proper in the early 90’s while there were high values in the end of the 80’s and at the start of the 90’s in the Gulf of Riga, the Gulf of Finland and the Gulf of Bothnia.
The total runoff to the Baltic Sea is mostly influenced by the sub basins with the largest contributions, obviously. The highest contribution is from the Gulf of Bothnia followed by the Gulf of Finland and the Baltic Proper. When comparing the Gulf of Bothnia to the Gulf of Finland, there is a rather good correlation in the features of the running mean values. When comparing the Gulf of Bothnia to the Baltic Proper, there are some correspondences but also some deviations in the patterns. The panel displaying the total runoff to the Baltic Sea represents, however, the general features of the different sub basins rather well. Hence, only the panel displaying the total runoff to the Baltic Sea is compared to the NAO index.

Figure 2. A: The integrated deviations of the runoff to the Baltic Sea. B: Total runoff deviation during 1950 – 2014 to the Baltic Sea. C: NAO index during 1950 – 2014 based on winter mean values of the NAO index. Positive index indicates stronger westerly winds bringing warmer and wetter winters to Scandinavia. D: NAO index during the years 1864 – 2014. B-D: The black line represents the five year running mean for each panel.

Figure 2 displays the total runoff deviation during 1950 to 2014 to the Baltic Sea, both as integrated difference (A) (sum of abnormalities from the mean (1950-2014), starting and ending with 0 km3) and with bars displaying the year to year deviation from the mean (B). The integrated difference gives an idea of the total amount of runoff in the Baltic Sea. The NAO index during the years 1950 – 2014 based on winter mean values of the NAO index is presented in panel C. The black line shows the five year running mean. By comparing the running means of panel B and C between 1952 and onwards, the features correspond rather well with each other. Note though, that in 2014 the total runoff to the Baltic Sea was among the top 10 lowest values since 1950, the NOA-index on the other hand, was among the top 10 highest values.
However, based on a positive correlation with a p-value of 0.036, the NAO indices may be used to indicate general runoff to the Baltic Sea back in time. This motivates the inclusion of the NAO indices for longer time series presented in panel D. Furthermore, looking at certain time periods, the correlation between the NAO index and total runoff deviation is rather good ($r=0.47$, 1990-2009). For other time periods there seems to be no correlation at all ($r=0.12$, 1960-1979), which indicates a more stochastic behaviour of the cohesion between Baltic Sea runoff and NAO index.

Many discussions have focused on whether global warming would increase river runoff in the Baltic Sea region, as suggested by most models and climate scenarios. A 500 year reconstruction of river runoff has, on the other hand, indicated a decrease of the total runoff to the Baltic Sea with increasing temperature as an effect of increased evaporation (Hansson et al., 2010). There are clearly uncertainties associated to river runoff that need to be further investigated.

References

http://climatedataguide.ucar.edu/guidance/hurrell-north-atlantic-oscillation-nao-index-station-based

Data

Observations are collected at the BALTEX Hydrological Data Centre (http://www.smhi.se/sgn0102/bhdc/bhdc.htm), whereas modelled data is obtained at SMHI using the HBV-model (Graham-99) and Balt-HYPE (Arheimer et al. 2012). Gulf of Riga runoff is based on observations up through 2001, while simulations are used for 2002. Gulf of Finland runoff is based on observations up through 1997, while simulations are used for 1998 – 2002. Baltic Proper runoff is based on observations up through 1996, while simulations are used for 1997 – 2003. For 2003 to 2009 all data is based on HBV model simulations. From 2010 and onwards all data is based on the Balt-HYPE model. Please note the change of model from HBV to Balt-HYPE made in 2010. There might be some inconsistencies regarding the result from the two models. The NAO indices are collected from https://climatedataguide.ucar.edu/sites/default/files/nao_station_djfm.txt