Nutrient bookkeeping in Germany
On farm and national level

Maximilian Hofmeier, Kerstin Panten
Julius Kühn-Institut, Braunschweig
Outline

• Legal background
• Parties involved
• Implementation
• Methodology
• Uncertainties
• Assessment of effectiveness
EU legislation as a framework for national legislation:

German legislations with Codes of Good Agricultural Practice:

- Fertilisation Act (Düngegesetz)
 - Ordinance on Fertiliser Application (Düngeverordnung)
 - Ordinance on Fertiliser Quality (Düngemittelverordnung)
 - Ordinance on Marketing and Transport of Manure (Wirtschaftsdüngerverbringungsverordnung)
- Federal Soil Conservation Act (Bundesbodenschutzgesetz)
- Federal Nature Conservation Act (Bundesnaturschutzgesetz)
Parties involved

Federal Ministry of Food and Agriculture
Federal Environment Ministry

Federal Environment Agency (UBA)
Federal Research Institutions

Ministries of Agriculture and Environment of the 16 Federal States

German Agricultural Society (DLG)
German Farmers’ Association
Nature And Biodiversity Conservation Union (NABU)
Association of German Agricultural Analytic and Research Institutes

Chambers of Agriculture
Background
- Implementation of Nitrates Directive (Action programme)
- Nation-wide with a revision every 4 years
- Last comprehensive revision from 2007 – Amendment in progress since 2012

Scope of the Fertiliser Ordinance
- Application technique and incorporation
- Site specific rules to control the spread of nutrients
- Prohibition periods, storage capacity, application after harvest of main crop
- Fertiliser requirements (fertiliser planning)
- Nutrient management plan (N- and P-balances)
- Limit for the application of animal manure
Fertiliser requirements
Fertiliser planning (DüV 2007)

Basic principles for application

• Assessment of fertiliser requirement **before** application:
 – Maintenance of site-related soil fertility
 – Balance between demand and supply

• Several **parameters** have to be considered for each field/management unit:
 – expected yield and quality; availability of soil nutrients; soil pH and C; other nutrient sources; other cultivation conditions like previous crop; soil tillage; irrigation

• Calculation of fertiliser demand based on **available soil nutrients**:
 – For N: Annually calculation for each field/management unit (N_{min}, recommendations)
 – For P: Soil analyses at least every 6 years.

• Time and amount of nutrient application **close to plant uptake**
Uniform and mandatory fertiliser planning for all crops and farms

- Crop N demand at a specific yield level
- Increases and reductions for:
 - Mineral-N in the soil (N_{min}) - 40 kg N
 - Yield difference to 3-yrs-average (10/15 kg N per 1 t/ha) + 10 kg N
 - Humus content of soil (> 4.5% → -20 kg N) 0 kg N
 - Application of organic fertilisers (10% of N_{tot}) - 12 kg N
 - Effect of preceding crop (e.g. winter rape) - 10 kg N

- Calculated crop N demand 158 kg N
- Minimum N-indices for the application of organic fertilisers
- Increases for crop development and weather events
Nutrient management plan
N- and P-Balances (DüV 2007)

Nutrient balance

- Annual nutrient balances for N and P by 31.03. for *previous* fertiliser year
 - Surface balance or aggregated land parcel plan
 - Updated annually to a multi-year nutrient management plan
- Minimum N-indices for organic manure application after deduction of shed, storage and application losses
- Unavoidable losses can be considered according to Federal State legislation
- Exceptions for:
 - Land with only ornamental plants, nurseries, vineyard or fruit orchard
 - Land used solely for grazing (≤ 100 kg N/ha from organic manure), no additional N
 - ≤ 10 ha managed fields
 - ≤ 1 ha vegetables, hops or strawberries
 - ≤ 500 kg N yr⁻¹ from organic manure
Evaluation of nutrient balances

- The balance need to be presented on demand (Federal State)
- Threshold for 3-yrs average of acceptable N balance surplus:
 - 2006-2008: \(\leq 90 \text{ kg N/ha*yr} \)
 - 2007-2009: \(\leq 80 \text{ kg N/ha*yr} \)
 - 2008-2010: \(\leq 70 \text{ kg N/ha*yr} \)
 - since 2009-2011: \(\leq 60 \text{ kg N/ha*yr} \)
- Threshold for 6-yrs average of acceptable P balance surplus:
 - \(P_2O_5 \leq 20 \text{ kg P/ha*yr} \)

=> Assumption that requirements of Fertiliser Ordinance are fulfilled
Nutrient management plan
Amendment of Fertiliser Ordinance (DüV 201x)

Amendment for N balance calculations:
- Adaption of minimum N-indices for organic manure application
- N removal with forage crops have to be consistent with N excretion
- Threshold for 3-yrs average of acceptable N balance surplus:
 - Until 2018: ≤ 60 kg N/ha*yr
 - After 2018: ≤ 50 kg N/ha*yr

Amendment for P balance calculations:
- Threshold of 20 kg P/ha*yr for 6-yrs average only for P-supply stages A, B & C
- Application of P fertilisers (min. & org.) on high supplied soils to P-offtake
- Duty for depletion on high supplied soils:
 - From 2018: 75% of P-offtake
 - From 2020: 50% of P-offtake
Control

- Federal States are responsible for control
 - Assigned mostly by specialized authorities of lower administration level
- Within the scope of Cross Compliance (approx. 1% of farms)
 - Systematic controls and „cross checks“
- Risk-related, specialised control of sectoral legislations (e.g. Nitrate Directive)

Consequences

- Breaches of cross compliance requirements → Deductions of direct payments
- Breaches of Fertiliser Ordinance requirements → Administrative Offences
 - If nutrient management plan (N- and P balances) is incorrect or not prepared
- Amendment of Fertiliser Ordinance (DÜV 201x):
 - Administrative offences if fertiliser requirements are incorrect or not prepared
Nutrient balances at different scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>Balance</th>
<th>Data source</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>National level</td>
<td></td>
<td>Statistical data (Destatis) and estimations</td>
<td>Eurostat/OECD => reporting duty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrate report => monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Agri-Environmental Indicator: Sustainability Strategy, Biodiversity</td>
</tr>
<tr>
<td>Regional level</td>
<td>FSS data and estimations</td>
<td>FADN data, bookkeeping</td>
<td>Implementation of EU-WFD => Emission monitoring</td>
</tr>
<tr>
<td>Farm level</td>
<td>Estimations and bookkeeping</td>
<td></td>
<td>Fertiliser Ordinance => Monitoring & control of GAP</td>
</tr>
<tr>
<td></td>
<td>Bookkeeping</td>
<td></td>
<td>Advisory service</td>
</tr>
<tr>
<td>Field level</td>
<td>Field record</td>
<td></td>
<td>Advisory service</td>
</tr>
</tbody>
</table>
Methodology
National N Balance – Farm Gate Balance

INPUT

- Mineral fertilisers
- Secondary fertilisers
- Atmosph. deposition (NO₃)
- Biological N-fixation
- Seed and planting mat.
- Fodder imports
- Animal imports

Agriculture
(no changes in soil N stocks)

OUTPUT (non-agricultural utilization)

- Crop market products
- Livestock market products

SURPLUS (farm gate balance)

Accumulation in soil, leaching and run-off, volatilisation, denitrification, etc.

Bach & Frede (2005), modified

HELCOM Workshop on nutrient bookkeeping, 28-29 April 2015, Oldenburg
Methodology

Surface & Livestock balance

INPUT crop production
- Mineral and secondary fertilisers
- Atmosph. deposition (NO₃)
- Biological N-fixation
- Seed and planting mat.

INPUT animal production
- Fodder imports
- Animal imports

Surface balance (Crop production)

Livestock balance (Animal production)

NH₃ losses

- Animal manure
- Fodder production

Surplus crop prod. (soil, leaching, runoff, denitr.,...)

Surplus animal prod. (NH₃ emissions, animal by-products)

N-offtake with cash crops

N-offtake with animal marketing products

Bach & Frede (2005), modified

HELCOM Workshop on nutrient bookkeeping, 28-29 April 2015, Oldenburg
Methodology
Fertiliser Application Ordinance

INPUT crop production

- Mineral and secondary fertilisers
- Atmosph. deposition (NO₃)
- Symbiotic N-fixation
- Seed and planting mat.

Surface balance (Crop production)

- Animal manure
- NH₃ losses

N-offtake with cash crops and fodder

Surplus crop prod. (soil, leaching, run-off, denitr.,...)

Bach & Frede (2005), modified

HELCOM Workshop on nutrient bookkeeping, 28-29 April 2015, Oldenburg
High influence of methodology on N-balance surplus

- 35 kg N/ha lower N-surplus of surface balance according to Fertiliser Ordinance

![Graph showing N-surplus of field balance from 1990 to 2012](chart.png)

N-surplus of field balance (kg N ha\(^{-1}\) UAA)

- National
- National, without N-dep. and asymbiotic N-fix.
- Fertiliser Ordinance

- 26.5 kg N/ha
- 7.9 kg N/ha
Uncertainties
Different guidelines for balance calculation

Influence of Federal State-specific guidelines on N-surplus:
- Range of N-surplus of aggregated field balances from 16 dairy farms; calculated according to the guidelines of 11 Federal States

→ Average range of different calculation methods was 43 kg N/ha (8-91 kg N/ha)

Machmüller & Sundrum (2014)
Relationship between grain yield and N uptake

- 2 winter wheat varieties in Clauen, Germany from 1995 to 2007*

→ N uptake of winter wheat is usually overestimated

*Data provided by the Federal Plant Variety Office

HELCOM Workshop on nutrient bookkeeping, 28-29 April 2015, Oldenburg
Variation of P concentration in soft winter wheat grain
- 10 common varieties tested across two soil types
→ P coefficient from Fertiliser Ordinance is highly overestimated

![Graph showing variation of P concentration in soft winter wheat grain](image-url)

P-coefficient for winter wheat (DM; equals 0.35 % in FM)

Mean of 10 winter wheat varieties

Variety no.

Panten et al. (2015)
Uncertainties & Enhancements
National level

Uncertainties
• N- and P-coefficients
• Changes in assessment methodologies and classification of statistical data
• Instead of actual use data, only selling data for mineral fertilisers are available
• Data on fodder productions are estimations (by BMEL) and only available on national level.
• Data about import/export of animal manure from/to the Netherlands are not reliable
 – Changes with the Ordinance on Marketing and Transport of Manure

Enhancements
• Implementation of biogas plants (energy production) and anaerobe digestates
Assessment of effectiveness
N-surplus of national N-balance

Agri-environmental indicator ‘N-balance surplus’
– Target value for 2010 was 80 kg N/ha

→ Continuous decline since 1990 by totally 52 kg N/ha
Assessment of effectiveness
N-efficiency

→ Main increase of N-efficiency in crop production (Field balance)
Assessment of effectiveness
Nitrates report

Nitrates report 2012:
• 49% of the groundwater monitoring stations have a poor chemical status ($\text{NO}_3^- - \text{N} > 50 \text{ mg/l}$)
• This are 28% of the UAA
• Rising trend in some areas

Espacially in areas with:
• High animal numbers
• Intensive cultivation of vegetables
• High concentration of biogas plants
• Low groundwater recharge rate

Quelle: BMU (2010)
Summary

Fertiliser Application Ordinance as legislative background for
• Fertiliser planning before fertiliser application
• Nutrient bookkeeping (N- and P-balances) after fertiliser application

Parties involved
• Federal Ministries, Ministries of Federal States, Chambers of Agriculture, Federal Research Insitutions/Environmental Agency, Associations, NGOs, etc.
• Sometimes too many...

Methodology of nutrient bookkeeping
• National level – Farm gate balance (whole sector) based on official statistical data
• Farm level – Aggregated field balance
Uncertainties

- Federal State-specific guidelines for balance calculation
- N- and P-coefficients
- Calculation of N-offtake with forage (roughage, i.e. grass, silage maize etc.)
- Uncertainties in official statistical data for calculation of national N-balance (e.g. mineral N fertilisers, fodder production)

Assessment of effectiveness

- Agri-environmental Indicator 'N-surplus' of national N-balance
- Nitrates Report
Thank you for your attention!
- Standard values for N demand at a specific yield level
 - From the Annex to the amendment of the Fertiliser Ordinance

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yield level [Mg/ha]</th>
<th>N demand [kg N/ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter rape</td>
<td>4</td>
<td>200</td>
</tr>
<tr>
<td>Winter wheat (A, B)</td>
<td>8</td>
<td>230</td>
</tr>
<tr>
<td>Winter wheat (C)</td>
<td>8</td>
<td>210</td>
</tr>
<tr>
<td>Winter wheat (E)</td>
<td>8</td>
<td>260</td>
</tr>
<tr>
<td>Durum wheat</td>
<td>5.5</td>
<td>200</td>
</tr>
<tr>
<td>Winter barley</td>
<td>7</td>
<td>180</td>
</tr>
<tr>
<td>Winter rye</td>
<td>7</td>
<td>170</td>
</tr>
<tr>
<td>Silage maize</td>
<td>45</td>
<td>200</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Minimum N-indices for organic manure application after deduction of shed, storage and application losses
 – Annex to DüV (2007) and changes in the amendment of the Fertiliser Ordinance

<table>
<thead>
<tr>
<th>Livestock</th>
<th>Slurry</th>
<th>Solid manure, liquid manure, deep litter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[% of N$_{tot}$]</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Pigs</td>
<td>60-70</td>
<td>55-60</td>
</tr>
<tr>
<td>Poultry</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Other (horses, sheep)</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Grazing, all animals</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>