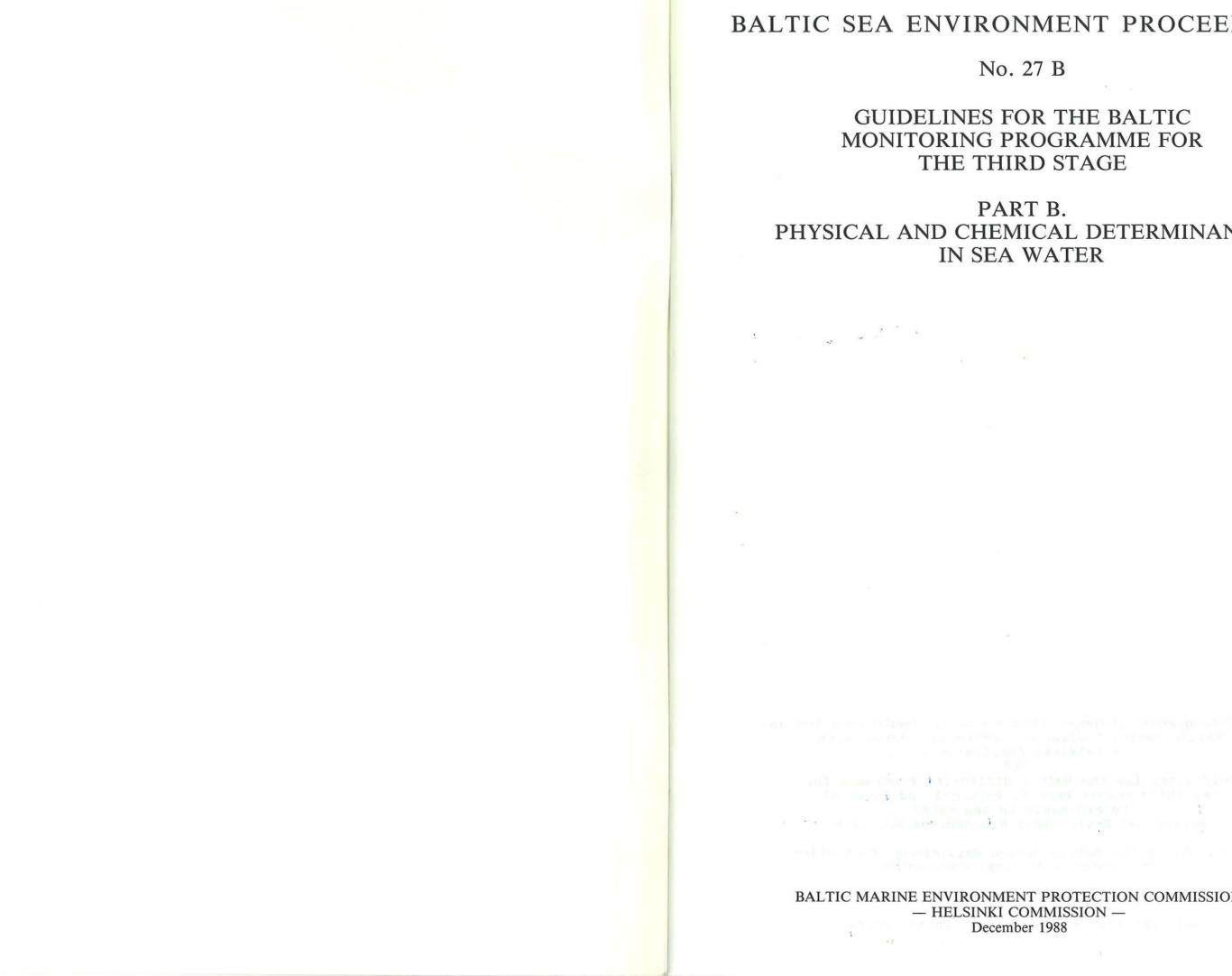
BALTIC SEA ENVIRONMENT PROCEEDINGS


No. 27 B

GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR THE THIRD STAGE

PART B. PHYSICAL AND CHEMICAL DETERMINANDS IN SEA WATER

BALTIC MARINE ENVIRONMENT PROTECTION COMMISSION – HELSINKI COMMISSION –

BALTIC SEA ENVIRONMENT PROCEEDINGS

No. 27 B

GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR THE THIRD STAGE

PART B. PHYSICAL AND CHEMICAL DETERMINANDS IN SEA WATER

BALTIC MARINE ENVIRONMENT PROTECTION COMMISSION — HELSINKI COMMISSION — December 1988

For bibliographic purposes this document should be cited as: Baltic Marine Environment Protection Commission - Helsinki Commission -1988 Guidelines for the Baltic Monitoring Programme for the Third Stage; Part B. Physical and Chemical Determinands in Sea Water Baltic Sea Environment Proceedings No. 27 B

Copyright by the Baltic Marine Environment Protection Commission - Helsinki Commission

ISSN 0357-2994

Helsinki 1988 - Government Printing Centre

The Guidelines for the Third Stage of the Baltic Monitoring Programme (BMP) are based on the Guidelines for the Second Stage of the BMP, published by the Commission as Baltic Sea Environment Proceedings No. 12 (BSEP No.12). They have been revised by an expert group nominated by the Commission. The group was chaired by Dr. Gunni Aertebjerg and experts from all the Baltic Sea States participated in the work, with assistance from the International Council for Exploration of the Sea (ICES) and experts of the Baltic Marine Biologists (BMB).

The ninth meeting of the Helsinki Commission (15-19 February 1988) accepted the Guidelines in general as HELCOM Recommendation 9/7. The Commission recommends that the Governments of the Contracting Parties to the Helsinki Convention should apply the Guidelines for the Third Stage of the BMP, i.e. from 1989 to 1993, and also, whenever possible, to follow the Guidelines in the monitoring of the internal waters as well. The data is to be submitted to the data bases of the Commission, as specified in the Guidelines.

The Guidelines for the Third Stage of the BMP are published in the BSEP series as four separate volumes (27 A, 27 B, 27 C, 27 D) and also as one combined volume of loose sheets.

The contents of the Guidelines for the Third Stage of the BMP is as follows:

BSEP 27 A; Part A; Introductory Chapters

Water

- 27 D; Part D; Biological Determinands

1 483174P

Volumes B, C and D are intended to be used together with Part A which contains general information on e.g. station networks, sampling requirements and data submission.

PREFACE

27 B; Part B; Physical and Chemical Determinands in Sea

27 C; Part C; Harmful Substances in Biota and Sediments

Any corrections or proposals for improvements concerning the content of these Guidelines are welcomed, and to be addressed to:

Baltic Marine Environment Protection Commission - Helsinki Commission -Mannerheimintie 12 A SF - 00100 Helsinki Finland Tel.: 90 - 602 366 Tlx.: 125105 hlcom sf Tfx.: 90 - 644 577

Possible comments concerning the formats prepared by the ICES should be addressed to the ICES, accordingly, as indicated in the formats.

GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR THE THIRD STAGE

of the Baltic Sea Environment Proceedings No. 27 A, B, C, D

A.

.

INTRODUCTORY CHAPTERS (Baltic Sea Environment Proceedings No. 27 A)

Table of contents of Part A

- 1. Introduction
- 2. Station grid and maps
- 3. Sampling frequency and timetable
- 4. Data
- adopted by the Helsinki Commission)

Β. PHYSICAL AND CHEMICAL DETERMINANDS IN SEA WATER (Baltic Sea Environment Proceedings No. 27 B).

Table of contents of Part B

- B. I Basic Hydrographic and Hydrochemical Determinands
 - 1. Temperature
 - 2. Salinity
 - 3. Density structure
 - 4. Oxygen
 - 5. Hydrogen sulphide
 - 6. pH
 - 7. Alkalinity
 - 8. Nutrients
 - 9. Sampling and preservation of samples
 - 10. References in Chapter B I
 - data
- B. II Heavy Metals, Petroleum Hydrocarbons and Chlorinated Hydrocarbons in Sea Water
 - 1. Heavy metals
 - 2. Petroleum hydrocarbons (PHCs)
 - 3. Chlorinated hydrocarbons (CHCs)
 - 4. Sampling and preservation of samples
 - 5. References in Chapter B II

 - magnetic tape

CONTENTS

5. Conditions required for carrying out scientific research in the fishing/economic zone (for programmes 6. Format for notification of proposed research cruises 7. Research vessels operating in the Baltic Sea Area

11. Reporting format for hydrographic and hydrochemical

6. Reporting format for contaminants in sea water 7. Exchange of data on contaminants in sea water via

C. HARMFUL SUBSTANCES IN BIOTA AND SEDIMENTS (Baltic Sea Environment Proceedings No. 27 C)

Table of contents of Part C

C. I Harmful Substances in Biota

- 1. Harmful substances in selected species
- 2. Analytical procedures for mercury, cadmium and lead in biological material
- 3. Chlorinated hydrocarbons in biological material
- 4. References in Chapter C I
- 5. Reporting format for contaminants in marine biota
- 6. Exchange of data on contaminants in fish and shellfish via magnetic tape
- C. II Trend Monitoring of Contaminants in the Coastal Zone
 - 1. Choice of monitoring organisms
 - 2. Sampling procedures
 - 3. Subsampling and handling
 - 4. References in Chapter C II

C. III Harmful Substances in Sediments

- 1. Contaminants in sediments
- 2. Reporting format for contaminants in sediments

D. BIOLOGICAL DETERMINANDS (Baltic Sea Environment Proceedings No. 27 D)

Table of contents of Part D

- 1. Phytoplankton primary production
- 2. Phytoplankton chlorophyll-a and phaeopigments
- 3. Phytoplankton
- 4. Checklist of phytoplankton
- 5. Rubin codes of phytoplankton
- 6. Phytoplankton identification sheets
- 7. Zooplankton

- 8. Macrozoobenthos
 9. Micro-organisms
 10. Biological data reporting format
 - 11. Forms to be used in relation to the biological data reporting format
 - 12. Microbiological data reporting format

TABLE OF CONTENTS OF PART B

PHYSICAL AND CHEMICAL DI в. IN SEA WATER

Basic Hydrographic and B. I Determinands

- 1. Temperature
- 2. Salinity
- 3. Density structure
- 4. Oxygen
- 5. Hydrogen sulphide
- 6. pH
- 7. Alkalinity
- 8. Nutrients
- 9. Sampling and preservation
- 10. References in Chapter B
- 11. Reporting format for hyd hydrochemical data

Heavy Metals, Petroleum B. II Chlorinated Hydrocarbon

- 1. Heavy metals
- 2. Petroleum hydrocarbons
- 3. Chlorinated hydrocarbon
- 4. Sampling and preservati
- 5. References in Chapter B
- 6. Reporting format for con sea water
- 7. Exchange of data on con sea water via magnetic

1 X X

1. 20 N

DETERMINANDS	Page
Hydrochemical	1
ion of samples 3 I ydrographic and	2 2 3 4 4 5 5 7 9 11
n Hydrocarbons and ns in Sea Water	26
(PHCs) ns (CHCs) ion of samples B II ontaminants in	26 27 28 28 30 31
ntaminants in tape	53

в.	PHYSICAL	AND	CHEMICAL	DETI
----	----------	-----	----------	------

B. I Basic Hydrographic and Hydrochemical Determinands

Only those methods which have been successfully intercalibrated have been accepted for the analyses of obligatory determinands.

The determinands to be monitored are as follows:

- temperature
- salinity
- density structure 1)
- oxygen
- hydrogen sulphide
- pH ²⁾
- alkalinity 3)

Remarks:

- 1) Tentative determinand
- measured as in 2)
- 4) tentative determinand.

ERMINANDS IN SEA WATER

- nutrients: phosphate, total phosphorus, ammonia, nitrate, nitrite, total nitrogen 1), silicate 4)

2) pH is obligatory only in combination with ^{14}C primary production measurements and then in samples from the same depths as the production samples 3) Alkalinity is a tentative determinand and should be

Silicate is a possible limiting factor for diatoms and should be determined at standard hydrochemical depths in the Kattegat, the Sound and the Belt Sea. For other sea areas, silicate is regarded as a

1. Temperature

Temperature is to be determined by reversing thermometer. Two reversing thermometers should be attached to each water bottle, and should be calibrated using standard facilities at least once every two years. Mercury thermometer readings should be corrected using the Sverdrup formulae, as given in La Fond (13), or any standard oceanographic text. If digital reversing thermometers are used, they may be reversed as soon as the desired depth is reached; otherwise, the thermometers must be allowed to rest at that depth for at least five minutes and not read until they have reached air temperature (normally about ten minutes). The use of the conductivity-temperature-depth (CTD) sonde is allowed (cf. Paragraph 2. below).

2. Salinity

Samples for the determination of salinity must be collected with care, in order to ensure that no salt crystals are trapped in the cap. Approved sample bottles which ensure negligible evaporation must only be used. Samples should be analyzed using a salinometer that has been carefully standardized using IAPSO Standard Seawater, which can be purchased from the Deacon Laboratory, Wormley, England. It is available at a salinity of about 35 (K-series) or about 30 (L-series). Some countries have established central facilities for preparing ampoules of secondary standard seawaters. It is important that these secondary standards be calibrated against the IAPSO Standard Seawater and not against a KCl standard on which IAPSO Standard Seawater is calibrated. It is also important to follow closely the manufacturer's recommendations on salinometer use.

In order to compute salinity values from salinometer conductivity ratio values, only the International Oceanographic Tables Vol. 3 (UNESCO (9)) or related algorithms (UNESCO (14)) should be used. The values produced by using either of these publications are derived from the Practical Salinity Scale 1978, and are, therefore, in practical salinity units. The algorithms should also be used to compute density values from the Equation of State for Seawater 1980. Density and other derived physical quantities may also be obtained using the Tables published in UNESCO (11). In cases of non-simultaneous determination of salinity and sampling for nutrients, this should be indicated in the Reporting Forms (Section B.I.11).

3. Density structure

Density is to be calculated from temperature and salinity (11).

4. Oxygen

Various modifications of the Winkler method have been intercalibrated.

If oxygen sensors are used (e.g., attached to the CTD), regular checks of the reproducibility of the sensor have to be made by titration of water samples by the Winkler method. At least the surface reading has to be calibrated. Oxygen sensors cannot be properly calibrated against moist air (100% saturation). Oxygen sensors may be poisoned by hydrogen sulphide. If a sensor has been lowered into hydrogen sulphide containing water, it must be checked immediately. In reporting data on oxygen, the method used (Winkler or oxygen sensor) should be stated (Section B.I.11).

5. Hydrogen sulphide

For small amounts, use the colorimetric method according to (1).

- 4 -

For large amounts, use dilution or volumetric titration according to Fonselius (1).

The concept "Negative Oxygen" is a convenient way to express the amount of oxygen utilized for producing hydrogen sulphide by reduction of sulphate ions $2(CH_2O) + SO_4^{2-} \longrightarrow 2CO_2 + 2H_2O + S^{2-}$. Assuming simple stochiometry $(S^{-2} + 20_2 \longrightarrow S0_4^{-1})$ sulphide may be converted into "negative oxygen" in order to get comparable equivalents by multiplying the hydrogen sulphide result by two (one molecule of H₂S is equivalent with two molecules of oxygen). To convert from μ mol/dm³ of sulphide to cm³/dm³ of oxygen, multiply the µmol-result by the factor -0.044. This simplification, however, may meet natural conditions incompletely, because other oxidizable sulphur compounds may possibly be produced in significant amounts by microbial sulphate reduction under anoxic conditions.

6. pH

pH should be measured by the electrometric method with glass electrodes. Measurement should be made according to (2) and (3) using thermostated samples. pH sensors (e.g., attached to a CTD) are also allowed.

Remarks:

- a) No depth correction should be applied because the pressure coefficient is not precisely known.
- b) The temperature correction should be made using the temperature coefficient by Gieskes in (3).

7. Alkalinity

Alkalinity should be determined by titration according to Gripenberg on the standard acid addition method (7).

8. Nutrients

Dissolved inorganic phosphate, a) nitrate, nitrite and ammonia

The methods intercalibrated at the Baltic Intercalibration Workshop (BIW), 1977, Kiel (6), are accepted for the third stage of the BMP (Annex to the report of the BIW). Reference is also given to (5) and (10).

It is recommended that interlaboratory comparisons of nutrient standard solutions be made on a regular basis. Stock standards containing concentrations > 1 mmol/dm³ may be stored for years if kept in DURAN glass ampoules.

Nutrient standard solutions are also recommended to be compared on a regular basis to either "Sagami Industrial Standards" or to primary standards which have been confirmed using Sagami standards or by intercalibration.

b) Total nitrogen *)

The peroxo-disulphate oxidation with consecutive determination of the nitrate (4) (Appendix to BIW Report, (6)) should be used. Reference is also given to (10).

peroxo-disulphate oxidation.

total phosphorus,

*) Total nitrogen means nitrogen compounds measured after

c) Total phosphorus and total nitrogen

As an alternative to the methods listed above for total phosphorus and total nitrogen, use digestion according to (12) and (5).

-б-

d) Silicate

Preference should be given to the ascorbic acid method by Koroleff (5) and Appendix to (5). Other methods intercalibrated at the BIW (6) can also be used. Reference is also given to (10).

e) <u>Corrections for turbidity</u>, <u>salinity</u> or <u>hydrogen</u> sulphide

When nutrients are analyzed using various kinds of autoanalyzers, the effect of sample turbidity is often omitted. The cuvettes of autoanalyzers are often too short for registering the small error caused by turbidity. In precise work with cuvettes longer than 2-3 cm, the turbidity of the sample should be measured when analyzing phosphate and nitrite and also nitrate if a cadmium coil is used as reductor instead of cadmium grains.

When large variations in salinity occur, e.g., in brackish water, silicate and ammonia results have to be corrected for salt errors. Koroleff (in Grasshoff, 1976) gives correction factors for silicate and ammonia. In Baltic water the error is very small, but with increasing salinity in the entrance area it becomes important. Some autoanalyzers have cuvettes of low quality, which show considerable errors in the refraction index with varying salinity. The cuvettes have to be checked for this error. The easiest way to compensate for the refraction index error is to measure the sample water reference in the same cuvette as the sample. -7-

If hydrogen sulphide is present in the water, it has to be removed before the analyses. Methods for removing hydrogen sulphide are given in "Methods of Sea Water Analysis", second edition (Editor, Grasshoff <u>et al.</u>, reference (3)).

9. Sampling and preservation of samples

a) Depths for hydrographic and hydrochemical determinands

The depths at which sampling should take place are as follows (in meters): 1, 5, 10, 15, 20, $(25)^*$, 30, 40, 50, 60, 70, 80, 100, 125, 150, 175, 200, 225, 250, 300, and 400 meters, and as close to the bottom as possible, since the oxygen tension near the bottom is of utmost importance to the benthos. (Note that, especially in the case of CTD measurements, the physical measurement of depth is pressure (expressed in decibars (dbars). In the Baltic, 1 dbar \approx 1 m). In order to calculate the exact distance between the lowest water-bottle and the bottom, the depth to bottom figures should be read when the messengers are released.

Primary sampling depths for pH and alkalinity are those selected for 14 C-primary production sampling (cf. Section D.1.b)).

b) Sampling techniques

Data on the determinands listed may be collected using a cast of reversing waters bottles (e.g., Nansen, Knudsen) equipped with reversing thermometers or a CTD recorded with an attached rosette sampler. In the case of rosette sampling, samples should be obtained only on the ascending profile.

*) 25 m obligatory in the Kattegat and the Belt Sea

c) Preservation of samples

Several determinands should be analyzed immediately on board. These determinands are: pH, oxygen, hydrogen sulphide, phosphate, ammonia, nitrite, nitrate and silicate.

Determinands which may be analyzed on shore:

Total phosphorus and total nitrogen samples may be preserved by deep freezing according to Koroleff (5) or by wet digestion according to Valderrama (12) and analyzed on shore. Salinity and alkalinity determinations can also be carried out on shore, provided that the analyses are carried out within a few weeks after sampling. For nutrient samples which cannot be analyzed immediately, sample preservation methods described in Koroleff (5) should be consulted.

d) Use of CTDs

It is important that only CTDs capable of holding a stable calibration, and producing salinity values accurate to the second decimal place should be used. CTDs should at the very least be carefuly calibrated using water bottles at the beginning and end of a cruise. However, even the most sophisticated of CTDs can drift in calibration from station to station, and particularly marked changes can occur should the instrument receive a mechanical shock. Thus, calibration samples should be obtained preferably at at least one depth per station.

Well-defined procedures for using CTDs and collecting calibration samples, and processing data that results from such observations, have been proposed by SCOR WG 51 (UNESCO (15)). These proposals, which include the

followed closely.

- 10. References in Chapter B I (Basic Hydrographic and Hydrochemical Determinands)
 - Weinheim.
 - Coop. Res. Rep. No. 29: 1-145.
 - water analysis": 85-97, Weinheim.
 - 4. Koroleff, F., Palmork, K.H., Ulltang, O. & Gieskes, J.M. (Eds.)
 - 5. Koroleff, F. 1983. Determination of nutrients. -
 - (BIW) 1977. Kiel, 7-9 March: 1-288.
 - 7. Almgren, T., Dyrssen, D., Fonselius S. 1983. Weinheim.
 - 8. Ehrhardt, M. 1983. Determination of particulate sis": 269-275 , Weinheim.
 - Tables, Vol. 3.
 - 10. Helsinki Commission, 1982. Second Biological Inter-No. 9: 82-94.
 - 11. UNESCO, 1987. UNESCO Technical Papers in Marine Tables, Vol. 4.

;

recommendations on how to compact CTD data, should be

1. Fonselius, S.H. 1983. Determination of hydrogen sulphide. - In: Grasshoff, K. et al. (Eds.) "Methods of seawater analysis": 73-80,

2. Carlberg, S.R. (Ed.) 1972. New Baltic Manual, ICES

3. Grasshoff, K. 1983. Determination of pH - In: Grasshoff, K. et al. (Eds.) "Methods of sea-

> 1977. The international intercalibration exercise for nutrient methods. - ICES, Coop. Res. Rep. No. 67: 1-44.

> In: Grasshoff, K. et al. (Eds.) "Methods of seawater analysis": 125-187, Weinheim.

6. Report of the Baltic Intercalibration Workshop

Determination of alkalinity and total carbonate. - In: Grasshoff, K. et al. (Eds.) "Methods of seawater analysis": 99-123,

organic carbon and nitrogen. - In: Grasshoff, K. et al. (Eds.) "Methods of seawater analy-

9. UNESCO, 1981. UNESCO Technical Papers in Marine Science No. 39, International Oceanographic

> calibration Workshop, Rønne, Denmark, 17-20 August 1982, Baltic Sea Environment Proceedings

> Science No. '40, International Oceanographic

- 12. Valderrama, J.R., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry Vol. 10, No. 2: 109-122.
- 13. La Fond, E.C., 1951. Processing Oceanographic Data. U.S. Navy Hydrographic Office, Washington, D.C. H.O. Publ. No. 614.
- 14. UNESCO, 1983. UNESCO Technical Papers in Marine Science No. 40, International Oceanographic Tables, Vol. 4.
- 15. UNESCO, 1988. UNESCO Technical Papers in Marine Science No. 54. The acquisition, calibration, and analysis of CTD data. A report of SCOR Working Group 51. 94 pp.

11. Reporting format for hydrographic and hydrochemical data

Introduction

The recommended format is in general agreement with the ICES Oceanographic Punch Card System. Some extra information can be included by utilizing unused capacity within the original system. The system allows to report the following information and parameters:

- 1) country
- 2) ship
- 3) assigned station number
- 4) latitude, longitude and quadrant
- 6) depth to bottom
- 7) station name
- 8) visibility (Secchi depth)
- 9) maximum observation depth
- mixed layer depth 10)
- 11) wind direction and speed
- 12) air temperature
- 13) weather, cloud amount, state of sea and occurrence of ice
- 14) sampling depth
- 15) temperature
- 16) salinity
- 17) dissolved oxygen content
- 18) dissolved inorganic phosphate
- 19) total phosphorus
- 20) silicate
- 21) nitrate-nitrogen
- 22) nitrite-nitrogen
- 23) ammonia-nitrogen
- 24) total nitrogen
- 25) hydrogen sulphide-sulphur

5) date and time of the observation (sample collection)

		E Q	Station no: Accordi
26) pH		5-8.	ICES it is recommer
27) alkalinity			
28) chlorophyll <u>a</u>			1 for each vessel of
and, furthermore, information on wh	ether biological		have consecutive nu
sampling was carried out or not.			out the year so that
Per soch budus medic statism of Malas M			respective vessel of
For each hydrographic station a Hydro M			implies that each s
Code 01, is filled in and for each dept			log. (It is not nec
and chemical observations are carried o			consecutive station
Chemistry Card 2, Code 56 is filled in.			9999 stations per s
In every case where an element is missi	ng the whole	9-12.	Latitude: given to
field of the element should be left bla	nk.		.14 should be ro
		•	should be rounded u
Leading zeroes should be filled in for	every observation.		
For example:		13-17.	Longitude: given to
depth of 0 metres is filled in as 0	000		.14 should be ro
temperature of 7.65 ⁰ C is filled in	as 0765		
total nitrogen of 22 µmol/dm ³ is fi	lled in as 22 blank.	18.	Quadrant: always 0
A characteristic feature of the ICES Pu	nch Card System	19-21.	Year: the three las
is the many overpunches in zone 11 and	12 that may		
occur. If data are reported on data she	ets (see attached	22-23.	Month
examples) the overpunches 11 and 12 show	uld be indicated		
by the letters X and R respectively in	the columns to	24-25.	Day
which they pertain.			
		26-27.	Station time: Start
Hydro Master Card, Code 01			of the hydrographic
Columns:			
1-2. Country: According to the IOC code	e, the code	28-31.	Depth to bottom: in
numbers for the countries particip	pating in the BMP		station
are as follows:			
Denmark	26	32-41.	Station name. Left
Finland	34		having names of mor
German Democratic Republic	96		blank spaces) have
Federal Republic of Germany	06	. • .	
Polish People's Republic	67		
- 2			
Sweden	77		

3-4. Ship: Insert code of the research vessel used when obtaining the sample (see Section A.7.)

ding to the procedure issued by ended to start with station number on 1 January of each year and numbering for each vessel throughnat one station number for the occurs only once per year. This ship keeps a continuous station ecessary that reported data have on numbers). The system allows for ship and year.

the nearest minute. The decimals counded downwards and .5 - .9 upwards.

to the nearest minute. The decimals counded downwards and .5 - .9 upwards.

(zero) for the Baltic

ast figures of the year

ting time (to the nearest hour) lc station in GMT

In metres, determined while on

justified. All BMP stations ore than ten letters (including to be written in abbreviated

;

-14-

	form:	Fehmarn Belt	FehmarBelt	51-52.	Wind direction: accord
		Mecklenburger Bucht	MecklBucht		direction, in tens of
		Halsskov Rev	Halsskov R		wind is blowing:
		W Landskrona	W Landskro		
		Ålborg Bugt	ÅlborgBugt	00	Calm
		Anholt East	AnholtEast	01	$5^{\circ} - 14^{\circ}$
		Bornholm Deep	Bornholm D	02	15 - 24
		Gotland Deep	Gotland D	03	25 - 34
		Landsort Deep	Landsort D	04	35 - 44
	,			05	45 - 54
42-44.	Visibil	ity measured with Seco	chi disc, in metres,	06	55 - 64
	to the	first decimal place.		07	65 - 74
				08	75 - 84
45.	Blank			09 -	85 - 94
				10	95 - 104
46-47.	Maximum	observation depth: in	n hundreds of metres.	11	105 - 114
	The dep	oth is to be filled in	as follows:	12	115 - 124
	0 -	50 m	00	13	125 - 134
	51 - 1	50 m	01	14	135 - 144
	151 - 2	50 m	02	15	145 - 154
	etc.			16	155 - 164
				17	165 - 174
48-50.	Mixed 1	ayer depth: The thickr	ness, in metres, of	18	175 - 184
	the mix	ed layer determined by	y means of a BT trace		
	or othe	r equivalent source.	The layer is considered	53-54.	Wind speed: given in k
	mixed (= isothermal, in this	case), if the		
		mate vertical temperat		55-57.	Temperature, dry bulb,
	than 0.	1 [°] C in any 15 metres a	and less than $0.6^{\circ}C$	58-60.	Temperature, wet bulb:
	in any	200 metres with the up	ppermost 2 metres		to the 1st decimal pla
	exclude	d. If the BT observation	ion shows that the		thermometer, respectiv
	mixed l	ayer extends to the bo	ottom of the trace		will be indicated by m
	the dep	th of the trace should	d be filled in		in the col. 55 and 58,
	togethe	r with an overpunch 1	1 in col. 50.		ice on the wet bulb wi
					i

-1

-15-

ording to WMO Code 0877, true of degrees, from which the

19	185 ⁰	-	194 ⁰
20	195	-	204
21	205	-	214
22	215	-	224
23	225	-	234
24	235	-	244
25	245	-	254
26	255	-	264
27	265	-	274
28	275	-	284
29	285	-	294
30	295	-	304
31	305	-	314
32	315		324
33	325		334
34	335	-	344
35	345		354
36	355	-	4
99	Varia	abl	Le

n knots

lb, and

;

lb: Readings, in degrees Celcius
place, of the dry and wet bulb
tively. Negative temperatures
y means of an overpunch of 11
58, respectively. The case of
will not be indicated.

61.	Weather: According to	the following code:		64.	Ice co	des:
	0 - Clear (no clouds a	at any level)				
	1 - Partly cloudy (sca	attered or broken)			Amount	and arrangement
	2 - Continuous layer(s	s) of cloud(s)			0	Ice free
	3 - Sandstorm, duststo	orm or storm of drifting snow			1	Open water - com
	4 - Fog, thick dust or	c haze			2	Very open pack
	5 - Drizzle		:			less than 4/10
	6 - Rain				3	Open pack ice -
	7 - Snow, or rain and	snow mixed			4	Close pack ice ·
	8 - Shower(s)				5	Very close pack
	9 - Not observed					10/10 with small
	Note: Code figure 2 is	used when the total amount			6	Compact pack i
	of clouds is 7/8 or mc	pre.				pack ice - conce
			!	12 ×	7	Fast ice with pa
62.	Cloud amount: The frac	tion of the celestial dome			8	Fast ice
	covered by cloud, to b	e given in eights:			9	Lead in very cl
	0 - No clouds					along the fast :
	1 - 1/8 or less, but n	not zero			Blank	Unable to report
	2 - 2/8					
	3 - 3/8				Stage of	of ice developmen
	4 - 4/8				0	New ice or day
	5 - 5/8					thick)
	6 - 6/8				1	Light nilas (5-
	7 - 7/8 or more, but n	ot 8/8			2	Grey ice (10-15
	8 - 8/8				3	Grey-white ice
	9 - Not observed				4	White ice, first
					5	White ice, secon
63.	State of sea: the aver	age wave height as obtained			6	Medium first yea
	from the larger well-f	ormed waves of the wave			7	Ice predominant
	system being observed.					some thicker ice
	0 - Calm (glassy)	0 metres			8	Ice predominant
	1 - Calm (rippled)	0 - 0.1				thicker than 30
	2 - Smooth (waveless)	0.1 - 0.5			9	Ice predominant
	3 - Slight	0.5 - 1.25				some thinner ice
	4 - Moderate	1.25- 2.5			Blank	No information of
	5 - Rough	2.5 - 4				
	6 - Very rough	4 - 6				
	1 5	6 - 9				
	8 - Very high	9 - 14				
	9 - Not observed					

;

ts of sea ice

oncentration less than 1/10 ice - concentration 1/10 to - concentration 4/10 to 6/10 - concentration 7/10 to 8/10 k ice - concentration 9/10 to all openings ice, including consolidated centration 10/10 pack ice outside close or compact pack ice or ice edge ort ent lark nilas (less than 5 cm -10 cm thick) or ice rind 5 cm thick) (15-30 cm thick) st stage (30-50 cm thick) ond stage (50-70 cm thick) ear ice (70-120 cm thick) tly thinner than 15 cm with .ce tly 15-30 cm with some ice 30 cm tly thicker than 30 cm with ce or unable to report

-18-

65-78. Blank (see Note)

79-80. Code no: Each Hydro Master Card receives the Code no. 01; in addition col. 80 is overpunched 11.

Note:

col.65 be used for the letters Y or N respectively, depending of whether a Biomaster Record exists for this station or not. If, in the future, a "Heavy Metal Master Record" and/or a "Sediment Master Record" are established, the col. 66 and 67 could be used in the same way. It would mean that the "Hydro Master Card" could be regarded as an overall "Station Master Record".

Hydro Chemistry Card 2, Code 56

- 1-25. As for the Hydro Master Card.
- 26-27. Observation time: The nearest hour of the time (in GMT) for the observation. The change of day (and month) during the work at a station is indicated by adding 24 to the time in hours.
- 28-31. Observation depth: in metres. That a depth is questionable is indicated by an overpunch 11 in col. 29.
- 32-35. Temperature: in degrees Celsius to the 2nd decimal place. A negative temperature is indicated by an overpunch 11 in col. 32. (How to handle questionable values, see Remark).
- 36-39. Salinity: in parts per thousand to the 2nd decimal place (salinometer readings should be rounded to the 2nd decimal place).

- questionable.
- as "traces", see also Remarks).
- 46-48. Total phosphorus content: given in mocromoles per
- as "traces".
- as "traces".
- 55-57. Nitrite content: given as micromoles nitritebe reported as "traces".

-19-

40-42. Oxygen content: given in umol/dm³ (micromole per dm³) of water at 20[°]C to the 2nd decimal place. If the value exceeds 9.99 umol/dm³ the excess of 10.00 is entered and an overpunch 11 is applied in col. 40. If oxygen is found in the presence of H_2S the oxygen value should be reported as

43-45. Phosphate content: dissolved inorganic, per dm³ of water at 20[°]C given as micromoles phosphatephosphorus to the 2nd decimal place. Values below 0.02 jumol/dm³ should be reported as "traces or non detectable amounts" (henceforth referred to

> dm^3 of water at 20°C to the 2nd decimal place. If the Tot-P value does not exceed the value of $PO_4 - P$ in col. 43-45 then the Tot-P value should be reported as questionalbe. Values below $0.02 \,\mu\text{mol/dm}^3$ should be reported as "traces".

49-51. Silicate content: given as micromoles of silicatesilicon per dm^3 of water at 20^oC to the 1st decimal place. Values below 0.1 umol/dm³ should be reported

52-54. Nitrate content: given as micromoles nitratenitrogen per dm^3 of water at 20^oC to the 1st decimal place. Values below 0.1 µmol/dm³ should be reported

> nitrogen per dm^3 of water at 20°C to the 2nd decimal place. Values below 0.02 µmol/dm³ should

- 58-60. Ammonium content: given as micromoles of ammoniumnitrogen per dm^3 of water at 20°C to the 1st decimal place. Values below 0.1 umol/dm³ should be reported as "traces".
- 61-63. Total nitrogen content: given in mocromoles per dm^3 of water at 20°C to the 1st decimal place. If the sum of nitrate, nitrite and ammonium exceeds the value of Tot-N then the Tot-N value should be reported as questionable. Values below 0.1 µmol/dm³ should be reported as "traces".
- 64-66. Hydrogen sulphide content: given as micromoles sulphide sulphur per dm^3 of water at 20°C to the 1st decimal place. Values below 0.1 µmol/dm³, and with the characteristic smell of ${\rm H_2S}$ present in the water sample, should be reported as "traces".
- 67-69. Hydrogen ion concentration (pH): in situ, i.e. the measured value corrected for the temperature difference between measuring temperature and in situ temperature but without pressure effect correction, to the 2nd decimal place. If an interpolated in situ temperature has been used to calculate the in situ pH, then the pH value should be reported as questionable.
- 70-73. Alkalinity: given in mmol/dm³ (millimole per dm^3) of water at 20^oC to the 3rd decimal place.
- 74-76. Chlorophyll a: given in micrograms per dm³ of water at 20[°]C to the 2nd decimal place.
- Note: Chlorophyll a is also included in the format for reporting biological data.

77-78. Blank

Remark to columns 32-76. That a value is questionable is indicated by an overpunch 11 in the 2nd of the columns allotted to the parameter.

Remarks to columns 43-66, 74-76. If only traces or non-detectable amounts of an element have been found this is indicated by reporting 0 (zeroes) in the columns allotted to the element with an overpunch 11 in the last of the columns.

If the only indication of a parameter is that it does not exceed a certain value this figure is entered together with an overpunch 12 in the last of the columns allotted to the parameter.

If the only indication of a parameter is that it exceeds a certain value this figure is entered together with an overpunch 11 in the first of the columns allotted to the parameter. In the same way are handled values greater than 9.99 or 99.9, i.e., 999 is entered together with an overpunch 11 in the first of the columns allotted to the parameter.

. 7

-21-

79-80. Code no: Each Hydro Chemistry Card 2 receives the Code no 56 if it is based upon original data, and the Code no 66 if it is based upon vertical interpolation (e.g. for standard depths).

Summary of the ICES Hydrographer's report "Some Consequences of the SUN Report for the ICES Punch Card System" presented at the ICES WG on Marine Data Management Meeting, 11-14 May, 1982

The XVIIIth General Assembly of IAPSO (Canberra, Australia, 2-13 December 1979) adopted the Report of the Working Group on Symbols, Units and Nomenclature in Physical Oceanography (the SUN Report). The Report deals with the use in the Physical Sciences of the Ocean of The Systeme International d'Unités (SI) and related standards for symbols, units and terminology. The following parameters in the ICES system are affected by the adoption of the SUN Report:

Wind speed: In the ICES data system wind speed is given in knots. The use of this unit is strongly discouraged by the SUN Report, according to which it should be replaced by metre per second. (1 knot = 0.514 m/s approx.)

Nautical mile: is temporarily tolerated in the Report. Its value in SI units is 1852 metres exactly.

Salinity: From 1st January 1982 the Practical Salinity Scale (1978), as established by the Joint Panel on Oceanographic Tables and Standards (JPOTS), should be used (see paragraph 3.2.2 Salinity). The SUN Report discouraged the use of the o/oo symbol which should be replaced by 10^{-3} . It would then read, e.g. $S = 35.25 \times 10^{-3}$ or S = 0.03525 or $S \times 10^{3} = 35.25$. JPOTS found this decision inconvenient, and suggested that the practical salinity should be expressed by numbers 1000 times larger than those used in previous definitions. This solution was adopted by the sponsor organizations of JPOTS. So it will now simply read S = 35.25.

Amount of substance: In the ICES Chemistry Card 2 the unit used for the concentration of nutrients in a water sample is microgram atom per dm³. The SUN Report declares all units such as gram-atom, gram-molecule, gram-equivalent and gram-ion to be obsolete. So in future the unit used in ICES card system should be called micromole per dm³ (µmol/dm³). In the same way the alkalinity unit milli-equivalent (millival) per dm³ will have to be replaced by millimole (mmol) hydrogen ions per dm³.

• .

-23-

Hydro Haster Card, Code 01 Hydro Depth Card,

Year: Name of Country: Name of Ship:

:	;			·,																			IN.	ame	ofS	mp:											
Cauntry		Station No.	La:		Lon		N S E)ate		ian time	Depth to bottom	Sta	tio	n Nam	ie	i chi	depth	8	obs.	Mixe Isyei	-	Wind			erature		i Cloud amount	2 Of 342			_					Code No.
J	Ship	_	•	- 1	•	'	I۳	Yr.	Ma.	Day	Stacion	oottom					a S	i di		oaptn	depti	ם "	Dir. Sp	2.	Dry	We	t	101	5	,							
12	34	5678	9 10	1 12	131415	16 17	18	192021	22 23	24 25	26 27	bottom 78 29 30 31	32 33 34	1353	6 37 38 3	9 10	41 42	43 44	15	16 17	18 19 !	50 51	52 53	5 1 5 5	56 57	58 59	60 6	1 62	636	4 65	66 67	68 65	707	1 72 7	3 74 75	76 77 78	77 80
						•																															01
· · · -	1	i	1								, <u> </u>	· · · · · · · · · · · · · · · · · · ·		,-		·		ا محمد احتا				1	i	1		1				J							
Country		Sintion No.		et.	L	ng.	N S E		Dele		Obe. Hme	Obs. depth	Temp.		Sal.		0 ₂				_	μ	ig−at	:/d	_m 3						01	н	linity.	m- ເ ຊuly/dmັ	Chloroph.g µg/dm ³	5 77 78	Cod.
ů	Ship		•	•	•	· ·	1.		Mo.		ð		°C		°/∞	cm	lam	PO.	-P	Total	Si	04-51	NO .N	IN	א. ס	NH.N	1	lotal	н	S-S	-		[¥o	۲.	ەلە 10 م		110.
12	34	5678	1 10	11 12	13 14 15	16 17	1	11 20 21	22 23	24 25	24 27	28 29 30 31	32 33 34	35 3	6 37 38 39	40	41 42	43:44	45	46 47	18 19	50;51	52 53 9	54 55	Z 56 57	58 59 6	0 41	62 6	3 64				<u>∢</u> _		$\frac{O}{1}$		19.40
											1				i						-								-		1	1				<u> </u>	56
										 	ļ	· .															_		_ _		<u> </u>		_			. [
						.					 										_ _				i												56
						-				Į	[<u>.</u>					-							56
						_		l																													56
						_																					-1								_		56
_			_																								-		-					(56
																					-						-		-	:							56
]										-								-			-	1				56
]]_]	-]	1								_	-				—							-					56
						-	1-	·								-	· 											_							:		56
	-	-				-		 				-		-															-				-	—·			56
			-			-	-												-									_				- -				-	56
							-									-			-					-			-		-			-					56
							-																				-				<u> </u>						
							-		—												-								- _							ļ	56
			-				-											_	_	; 																	56
							-												-		-						_	: 	_						<u> </u>		\$6
-							_							-				_											_	1							56
											*****										_							1							:		56
	•	1	• 1			I	1	i	1	J	I	1		1	:	I	ł	ł	ł	:	1						ł	1					1			,	56

	o Ch 56													Year: Name of Country: Name of Ship:																				
ţ		Ste N		I	Left.		Long	Ŀ	2 5	I	Dete		lim.	Obs. depth		mp.	s	iat.	02				μ	g-at	/dm ³				рн	Alkalinity	equividm	Chioroph.g µg /dm ³		Con
Les Court	Ship		,	0			•		w	Yr.		Dey	~		°C		1 1		cmildni							NH1-N		H_S-S		Alka	È	Chioi µg /		1
12	34	5 4	78	1 10	11 12	13	14 15	36 17	10	19 20 21	22 23	24 25	26 27	28 29 30 31	32 33	34 35	36 37	38 39	40 41 42	43 44 4	5 46 47	48	49 50 51	52 53 5	55 56 57	58 59 60	61 62 63	64 65 66	67 68 69	70 7	1 72 73	74 75 7	6 77 78	79 8
	L													 		1		1				j												56
																						-												56
															_													:					1	56
											1									1													-	56
					~										-		-										:							56
					Τ						-		1		-														· ···· ··· ·					56
													1								-													56
		1	- ·																														-}	56
	1	1				1							1		1		-				-									-			1	56
	1			1	1	1					1	1	1						1		-1					1				1		1	1	56

5 483174P

-24-

[]	 					 					[56
																			56
1															1				56
	 					 	 												56
	-				-			-											56
]	 																		56
	-						 						1			-			55
						 								:			i		56
										 					 				56
			 															- 1	56
	 					 								Î				1	56

Remarks:

International Council for the Exploration of the Sea

B. PHYSICAL AND CHEMICAL DETERMINANDS IN SEA WATER

B. II Heavy Metals, Petroleum Hydrocarbons and Chlorinated Hydrocarbons in Sea Water

The determinands to be monitored in sea water are as follows:

- heavy metals 1) (Hg, Cd, Zn, Cu and Pb)
- total tin and organic tin $^{1)}$
- petroleum hydrocarbons (PHCs) 1)
- chlorinated hydrocarbons (e.g. DDTs, PCBs, lindane) 1)

Remarks: 1) Tentative determinand

1. Heavy metals

These substances are included in the Monitoring Programme for the Third Stage as tentative determinands because of the methodological problems concerned (5, 7).

a) Noxious metals

Noxious heavy metals of high priority are mercury (Hg), cadmium (Cd), zinc (Zn), lead (Pb) and copper (Cu). The determination of Hg, Cd, Zn, Pb and Cu in water cannot be obligatory unless the laboratories are equipped with suitable (metal-free) sampling gear, clean benches and dust-free premises. Experience has shown that contamination of the sea water samples during the sampling procedure, storage and working up, is the most serious interference.

b) Methods

The most successful methods for the measurement of individual trace metals in sea water, as determined by the ICES Sixth Round Intercalibration on Trace Metals in Sea Water (5), are listed below:

Copper, zinc, cadmium, lead: chelation/solvent extraction/atomic absorption spectrometry (either graphite furnace or flame);

Mercury: collection on gold followed by cold vapor atomic absorption spectrometry.

Analysis of all the metals except mercury can be achieved using anodic stripping voltammetry, provided the methods are carefully checked and all organic matter is destroyed before the determination stage.

It is recommended that measurements of total organic tin be made in water from harbour areas and in coastal areas with ship and pleasure boat traffic. This proposal is made because it has been shown that the organo-tin compounds used in antifouling paints have serious effects on the larvae and other life stages of molluscs and other marine organisms.

Detailed procedures for the measurement of organic tin and total tin in sea water are described in (8).

2. Petrrieum hydrocarbons (PHCs)

the IOC Manual No. 13 (2) is recommended for the determination of petroleum hydrocarbons in sea water with the change that, instead of carbon tetrachloride, hexane shall be used for the extraction, as recommended by the Workshop for Intercalibration of Methods for Analysis of Petroleum Hydrocarbons in Sea Water (3).

-26-

-28-

However, the following remarks should be taken into account:

- the UV-spectrofluorometric method should be considered as a screening technique and if unusually high concentrations of PHCs are recorded, other relevant techniques (e.g., GC-MS) should be applied to study the case;
- it is recommended that improved techniques for determination of PHCs be developed;
- topped Ekofisk crude oil could be used as the reference standard for oil contamination monitoring purposes (available from the Deutsches Hydrographisches Institut, Hamburg).

3. Chlorinated hydrocarbons (CHCs)

These are included in the Monitoring Programme for the Third Stage on a tentative basis because of the serious methodological difficulties encountered (7).

4. Sampling and preservation of samples

Depths for harmful substances a)

Water samples for the measurement of the harmful substances should be taken from the following layers (depth specifications are not given, as these will vary in the different areas of the Baltic Sea):

- surface microlayer (not obligatory)
- middle of mixed surface layer
- middle of winter surface layer
- middle of deep water.

Petroleum hydrocarbons are sampled at 1 m depth only.

b) Sampling techniques

For heavy metal determinations (tentative), completely metal-free samplers should be used, together with plastic-coated hydrowires, stainless steel guide wheels and plastic-coated messengers.

Methods for the sampling of sea water and storage of samples prior to measurement of trace metals are given in (4).

described in (3).

The sampling technique for chlorinated hydrocarbons is described in (6).

c) Preservation of samples

Heavy metals need not be analyzed on board. Any filtration must be carried out immediately after sampling, preferably using a "clean bench". Acidification (at pH 1-2) of samples (preferably in polyethylene, teflon or quartz bottles) is the recommended method of preservation (1) and (4).

PHCs and CHCs

A description of agreed and intercalibrated methods for PHCs in sea water is given in (3).

-29-

The sampling technique for petroleum hydrocarbons is .

No agreed methods can be recommended for CHCs.

-31-

-30-

5. References in Chapter B II

(Heavy Metals, Petroleum Hydrocarbons and Chlorinated Hydrocarbons in Sea Water)

- 1. Kremling, K., Olafsson, G., Andreae, M., Koroleff, F. 1983. Determination of trace metals. In: Grasshoff, K. et al. (Eds.) "Methods of seawater analysis", 189-246, Weinheim.
- 2. UNESCO, 1984. Manual for Monitoring Oil and Dissolved/Dispersed Petroleum Hydrocarbons in Marine Waters and on Beaches. IOC Manual No. 13.
- 3. Helsinki Commission, 1981. Workshop on the Analysis of Hydrocarbons in Seawater, Kiel, 23 March - 3 April 1981, Baltic Sea Environment Proceedings No. 6: 1-52.
- 4. Yeats, P.A., 1987. Trace metals in sea water: Sampling and storage methods. ICES Techniques in Marine Environmental Sciences No. 2.
- 5. Berman, S.S. and Boyko, V.J., 1988. Report on the Results of the ICES Sixth Round Intercalibration on Trace Metals in Estuarine Water. ICES Coop. Res. Rep. No. 152.
- 6. Gaul, H. and Ziebarth, U. 1983. Method for the Analysis of Lipophilic Compounds in Water and Results about the Distribution of Different Organochlorine Compounds in the North Sea. Dt. hydrogr. Z. 36, 191-212.
- 7. Alzieu, C., Bewers, J.M., Duinker, J.C., Berman, S.S. et al., 1986. Report on the ICES Fifth Round Intercalibration on Trace Metals in Sea Water and the Fifth Intercomparative Exercise on the Determination of Organochlorine Residues in Fish Oil. ICES Coop. Res. Rep. No. 136.
- 8. Jensen, A. and Cheng, J. (in prep.). Determination of organic and total tin in sea water by extraction and graphite furnace atomic absorption spectroscopy. ICES Techniques in Marine Environmental Sciences No. 8.

6. Reporting format for contaminants in sea water

International Council for the Exploration of the Sea *

, · · .

. ;

. }

÷

INTERIM REPORTING FORMAT FOR CONTAMINANTS IN SEA WATER

HELCOM-VERSION

REVISED MAY 1986

÷

*) All questions or inquiries concerning this format and its use should be directed to the ICES Environmental Officer, I C E S, Palægade 2, DK-1261 Copenhagen K, Denmark.

Revised May 1986

INTERIM REPORTING FORMAT FOR CONTAMINANTS IN SEA WATER VERSION 2

1. INTRODUCTION

This Interim Reporting Format for Contaminants in Sea Water has been drafted on the basis of the present requirements of monitoring programmes for contaminants, primarily trace metals, in sea water.

2. OVERVIEW OF THE SYSTEM

Three types of forms have been included in the system: a Sea Water Sampling and Analytical Methods Form, a Sea Water Contaminant Master Form, and a Sea Water Contaminant Data Form.

The Sea Water Sampling and Analytical Methods Form records information on the methods of sampling, pretreatment, preservation and analysis used for a particular contaminant by the analytical laboratory involved for the year concerned.

A series of these forms should be filled out and should precede the first Master form; they should describe the methods associated with any contaminant subsequently reported.

Generally, only one form will need to be filled out for each contaminant; however, if more than one series of methods have been used for any contaminant, a separate form must be filled out for each new combination of methods.

Each contaminant analysis reported later on the Sea Water Contaminant Data Forms is unambiguously associated with a specific Sea Water Sampling and Analytical Methods Form by means of a Method Identifier item.

The Sea Water Contaminant Master Form serves as the master record for the series of data obtained at one sampling station on one sampling occasion. This form provides general information on when and where the sample was obtained

The Sea Water Contaminant Data Form provides the record for the data on the sea water samples obtained, according to sampling depth. This form is used to report data on the salinity, amount of suspended solids and the concentrations of contaminants in the sample. Previously it was necessary to fill in separate forms for each contaminant; now several contaminants can be reported on one form with the Method Identifier item used to link each analysis with the Sampling and Analytical Methods Form which contains the relevant method details. Furthermore, data relating to samples from different depths can be reported on a single form as each time a new depth value (ie. a new depth parameter line) is recorded, this signifies that the data lines which follow belong to the sample at that depth.

Positions have been provided on all forms for comments and additional information. These positions should be used for information which will assist in the interpretation of the data, thus making the data more valuable for future use. One example is the inclusion of information on methods which have been changed from previous years.

It is intended that all types of relevant data be reported on these forms. If codes for any items are missing, they can be developed on request to the ICES Environment Officer.

3. DETAILED DESCRIPTION

3.1 <u>General</u>

The following description applies to all forms. The page number should be inserted in the upper left-hand corner of each page. On the first page of the series , i.e., on the first Sea Water Sampling and Analytical Methods Form, the total number of pages of forms associated with the series should be included.

3.2 Sea Water Sampling and Analytical Methods Form

Sea Water Sampling and Analytical Methods forms are required for 'contaminants' ie. for those parameters where this type of information is appropriate. Annex 5 indicates whether Sampling and Analytical Methods Forms are mandatory, optional or not required for a particular parameter.

The Sea Water Sampling and Analytical Methods Form is designed to provide a means of recording all details of the methods used in the sampling and analysis of a particular contaminant in one initial stage, and to remove the need to duplicate this information repeatedly on other forms where data for the same contaminant is included. Thus, a series of these forms is filled out, preceeding the first Sea Water Contaminant Master, to cover all combinations of methods used by a particular laboratory in that year. The methods forms can therefore be referred to repeatedly from the Sea Water Contaminant Data Forms,

Often it will only be necessary to fill out one Sampling and Analytical Methods Form for each contaminant reported; if more than one method description applies to any one contaminant, then additional methods forms should be filled out for that contaminant, each with a different Method Identifier (see description of Method Identifiers on pages 9 and 10). If analysis of a contaminant is carried out by more than one analytical laboratory, the appropriate number of methods forms should be filled out for each laboratory.

It should be noted that the methods are described on this form by means of codes which should be linked to a full description of the details, including types of equipment, that is retained in the laboratory; if the laboratory is participating in the Joint Monitoring Programme these details should also be sent to the Secretariat of the Oslo and Paris Commissions.

The Sea Water Sampling and Analytical Methods Form should be filled in according to the following description.

Code Deganintion

T+ ~~

<u>Item</u>	Code Description
1. Form identifier code	The code "A" identifies the Sea Water Sampling and Analytical Methods Form.
2. Country	Insert the IOC Country code (see Annex 2), the same information appears on the Sea Water Master Form.
3. Year	Insert the last two digits of the sampling year.
4. Reporting Laboratory	Insert the four-letter mnemonic code (see Annex 1) for the laboratory reporting the data, the same information appears on the Sea Water Master Form.
5. Analytical Laboratory	Insert the four-letter mnemonic code (see Annex 1) for the analytical laboratory concerned.
 Parameter/Contaminant code 	Insert the code for the parameter/contaminant for which the methods data apply, according to the codes given in Annex 5.

8. Method of sampling: ... bottle type deployment

11. Method of analysis

· i

. ì

-35-

7. Method identifier

Insert a method identifier code for the combination of methods described on this form. It is suggested that a code "1" is given for the first Methods Form for each contaminant, then "2", "3" etc. for additional forms, if more than one combination of methods has been used for that contaminant. This item links the method information which follows with any analysis (of the contaminant identified in item 6 by the laboratory identified in item 5) for which this Identifier is reported on a Sea Water Contaminant Data Form (item 11 or 14).

- Insert code for sampling bottle type in the left column and code for means of sampler deployment in the right column. Each laboratory should maintain detailed records of the methods used and should assign a code number for each of these methods.
- 9. Method of pre-treatment Insert code for method of separation of suspended solids in the left column and code for any other pre-treatment used in the right column. Each laboratory should maintain detailed records of the methods used and should assign a code number for each of these methods.
- 10. Method of preservation Insert code. Each laboratory should maintain detailed records of the methods used and should assign a code number for each of these methods.

Insert a 3-digit code for the method used to analyse the contaminant. Each laboratory submitting data should maintain detailed records of the methods used to analyse the contaminants and should assign a 3-digit code number for each of these methods. The appropriate code should be inserted here.

12. Limit of detection	Right justified, zero filled. Insert the detection limit for	*****	**** FORMAT MODIFI
	the method of analysis used to determine the contaminant re-	4. EITH	ER - Sequence no.
	ported in the units appropriate to that contaminant (see Annex 5). The limit of detection is defined here as that conc- entration of analyte which yields an analytical response equal to three times the standard deviation of the complete procedural blank.	OR	- Station no.

- 13. I/C (intercalibration) Insert a 2-digit code for the relevant intercalibration exercise in which the laboratory has most recently participated, according to the list in Annex 3.
- 14. Comments Plain language comments can be inserted as needed. Such comments can include information relevance to of the interpretation of the methods description of an used, intercalibration exercise etc.

3.3 Sea Water Contaminant Master Form

One Sea Water Contaminant Master is filled in for each sampling station or area on each sampling occasion. The Master Form should be filled in according to the following description.

Item	Code Description							
PART I								
1. Form identifier code	The code "M" identifies the Sea Water Contaminant Master Form.							
2. Sampling country	Insert the IOC Country Code (see Annex 2).							
3. Ship code	Insert code of the search vessel used when obtain the samples. (see list of ICE, Ship Codes.)							

5. Sampling date

6. Sampling time

7. Sampling area coordinates

•

FICATION - NEW DEFINITION **********

Insert the number of the Master Form being filled in beginning with 0001 for the first Master form in a year, 0002 for the second etc.

If the sample data reported coincide with other measurements which are reported elsewhere using the ICES Hydrographic Data Format a comment should be included to this effect. The station number which is associated with the ICES Hydrographic Data Format should be inserted instead of the Sequence number, to allow future cross- referencing of the data.

Indicate the year (last two digits only), month, and date of sampling. (The day may be omitted, if desired, and the applicable columns filled with zeroes).

Time at which sampling commenced (optional parameter to permit correspondence with theHydrographic Data Format).

coordinates of the Insert sampling area, as follows:

Note that decimal fractions of minutes are recorded and not seconds -

(1) A sample taken at the coordinates 59"20.15'N 18"55.3'E would be designated according to the coordinates system as:

5 9 2 0 1 5 1 8 5 5 3 0 E

(2) A sample taken at the coordinates $50^{\circ} 10.5$ 'N $4^{\circ} 30.25$ 'W would be designated according to the coordinates system as:

501050043025W

3.4 Sea Water Contaminant Data Form

The Contaminant Data Form records data on the various 'parameters' which are associated with each sample. Parameters can be physical measurements such as depth, salinity, temperature, etc., or chemical measurements such as contaminant concentrations, nutrients, etc.; a list of parameters with associated codes and units, etc., is given in Annex 5. The nature of a particular parameter determines (i) whether it is appropriate to fill out an associated Sampling and Analytical Methods form, and (ii) whether it should be reported as a single value under item 7, or, as in the case of contaminants which can be determined in a sample before or after filtration, a value should be recorded under items 7 and/or 10 as appropriate.

Each line on the Contaminant Data Form, (items 4-11), records data for one 'parameter'. One form can include data for several parameters associated with samples taken at a particular station. Depth is a 'key' parameter; all parameters which follow a particular depth record are assumed to be parameters associated with a sample taken at that depth. Thus, the first record line on a Contaminant Data Form should contain data on the sampling depth, other parameters associated with that sample are reported on the following lines. A new depth record (at the same depth or another depth) indicates that subsequent parameter records are associated with a sample taken at this 'new' depth.

The Sea Water Contaminant Data Form should be filled in according to the following description:

Item

1. Year

2. Sequence/Station no.

3. Form identifier code

ì

- 4. Parameter/contaminant code

PART II	
8. Reporting Laboratory	Insert the four-letter mnemonic code for the laboratory reporting the data (see Annex 1).
**************** FORMAT MODIFIC	CATION - NEW OPTIONS ***********
9. Organization code	Indicate the organization(s) for which data are submitted, as follows:
	I - International Council for the Exploration of the Sea
	J - Joint Monitoring Programme of the Oslo and Paris Commissions
	B - Baltic Monitoring Programme of the Helsinki Commission
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
10. Sampling area desig- nation (eg. JMP Area (sub-area))	If the Organization code J has been included in item 9 (above) then insert, left-justified, the code number of the JMP area sampled. If appropriate, insert a sub-area or station number, leaving one blank after the area number.
11. Purpose of monitoring	Indicate purpose of monitoring according to the following code: 0 - No specific purpose 2 - Geographical distribution
	3 - Trend determination
12. Number of Sea Water Contaminant Data Forms following this Master	Right justified, zero filled. Insert number of Contaminant Data Forms following this Master.
13. Comments	Insert plain language comments, as needed.

-39-

************ FORMAT MODIFICATION - NEW DEFINITION *********

Code Description

Insert the last two digits of the sampling year, the same as on the Sea Water Sampling and Analytical Methods Form.

Insert the Sequence/Station number, the same information as on the Sea Water Contaminant Master.

The code "C" identifies the Sea Water Contaminant Data Form.

*********** FORMAT MODIFICATION - NEW DESCRIPTION *********

t	Insert	the	e coc	le	for	the
	parame	ter/cor	ntamina	ant	accor	cding
	to the	codes	given	in	Annex	5.

5. Method Identifier Τf relevant, insert the (before filtration) appropriate Method Identifier corresponding to that inserted on the associated Sampling and Analytical Methods Form for the methods of sampling and analysis for the contaminant before filtration.

6. Qualifier

In the first column, indicate whether the value reported under item 7 should be gualified by:

 \rangle - greater than, or \langle - less than.

If not, leave blank. When not detected, use < the detection limit in numerical terms.

In the second column, insert a Validation Flag as follows:

Blank - unspecified or quality control check has not been made

A - Acceptable: data found acceptable during quality control checks.

S - Suspect Value: data considered suspect (but not replaced) by the data originator on the basis of either quality control checks or recorder/ instrument/platform performance.

Q - Questionable Value: data con sidered suspect (but not replaced) during guality control checks by persons other than those responsible for its original collection, e.g., a data centre.

R - Replaced Value: erroneous or missing data has been replaced by estimated or interpolated value - method by which replacement values have been derived should be described in plain language records.

M - Missing Value: original data erroneous or missing.

7. Parameter value

OR

Contaminant concentration before filtration

8. Method Identifier (after filtration)

9. Qualifier

10. Parameter/Contaminant concentration after filtration

11. Analytical Laboratory

i ÷,

12. Comments

-40 -

-41-

*********** FORMAT MODIFICATION - NEW DEFINITION ***********

Right justified, zero filled. Insert the parameter value or the concentration of the contaminant as obtained from the analysis of the sea water before filtration, centrifugation, or other means of separation of suspended solids, in the appropriate units (see Annex 5).

Insert the appropriate Method Identifier corresponding to that inserted on the relevant Sampling and Analytical Methods Form for the methods of sample analysis for the contaminant after filtration.

If the method of analysis used is the same as that used before filtration and the details of sample collection/preservation etc. are also the same, then insert the same Method Identifier as that used in Item 5 (above).

Indicate whether the value recorded under item 10 should be qualified; fill in as described in Item 6, above.

- Right justified, zero filled. Insert the concentration of the contaminant in $\mu q/l$, as obtained from the analysis of the sea water after filtration, centrifugation, or other means of separation of suspended solids.
- Insert the four-letter mnemonic code (see Annex 1) for the analytical laboratory. This is a mandatory item and should correspond to the code reported on the Sampling and Analytical Methods Form which contains details of the methods applied.

Plain language comments can be inserted as needed. Such comments can include information relevant to the interpretation of the contaminant values or sample data.

Reporting	format for contaminants in sea water	F.R.G AH	HG FEDERAL REPUB
	ANNEX 1 CODES FOR THE REPORTING AND ANALYTICAL MONITORING PROGRAMMES - BY COUNTRY	BF	RG <u>B</u> undesforschu Laboratory fü der <u>G</u> ewässe: Wüstland 2, 2000 Hamburg FEDERAL REPUB
DENMARK HFL) Miljøstyrelsens Havforureningslaboratorium Jægersborg Allé 1B DK-2920 Charlottenlund DENMARK	BF	Institut für <u>B</u> innenfisch Palmaille 9 2000 Hamburg FEDERAL REPUB
SCS	<u>S</u> tate <u>C</u> hemical <u>S</u> upervision <u>S</u> ervice Mørkhøj Bygade 26-H DK-2860 Søborg		Kaiserin-Augu D-5400 Koblen FEDERAL REPUB
ICD	DENMARK Danish Isotope Center Skelbækgade 2 DK-1717 Copenhagen V	DH	IG <u>D</u> eutsches <u>H</u> yd Bernhard-Noch D-2000 Hambur FEDERAL REPUB
FINLAND IMR	DENMARK Institute of Marine Research P.O. Box 33	NL	WG <u>N</u> iedersaechsi fuer <u>W</u> asse An der Scharl D - 3200 Hild FEDERAL REPUB
	00931 Helsinki 93 <u>F</u> INLAND	WG	EG <u>Wasserguetest</u> Focksweg 32 a D - 2103 Hamb FEDERAL REPUB
G.D.R AHZI FREI	chemischen Industrie GERMAN DEMOCRATIC REPUBLIC Forschungsinstitut für NE-Metalle	Fľ	TG <u>F</u> resenius <u>I</u> ns Chemische und Laboratorien (D-6204 <u>T</u> aunus FEDERAL REPUBI
	<u>Frei</u> berg 9200 GERMAN DEMOCRATIC REPUBLIC	IS	Laboratorium 1
BHIF	GERMAN DEMOCRATIC REPUBLIC		und Ölanalyt Dr. Harald Sch Sophie-Dethlet
IGDF	<u>I</u> nstitut für Meereskunde Akademie der Wissenschaften de DDR Seestrasse 15 DDR-2530 Rostock-Warnemünde <u>G</u> ERMAN <u>D</u> EMOCRATIC <u>R</u> EPUBLIC		D-2240 <u>H</u> eide FEDERAL REPUBI

JBLIC OF GERMANY ungsanstalt für <u>F</u>ischerei für <u>R</u>adioökologie ser 55 JBLIC OF GERMANY ungsanstalt für Eischerei <u>K</u>üsten- und cherei 50 JBLIC OF GERMANY T FÜR GEWAESSERKUNDE usta-Anlagen 15-17 enz JBLIC OF GERMANY drographisches <u>I</u>nstitut ht-Strasse 78 irg 50 JBLIC OF GERMANY isches <u>L</u>andesamt erwirtschaft lake 39 desheim BLIC OF GERMANY telle <u>E</u>lbe a burg 95 BLIC OF GERMANY stitut d Biologische GmbH isstein-Neuhof BLIC OF GERMANY humacher für Wasser-, Abwasserytik Schumacher (Dipl. Chem.) effs-Str. 4 BLIC OF GERMANY

-45-

	4	4	••••	
--	---	---	------	--

	LWKG VUCG	<u>L</u> andesamt für <u>W</u> asserhaushalt und Küsten Saarbrückenstraße 38 D-2300 <u>K</u> iel 1 FEDERAL REPUBLIC OF <u>G</u> ERMANY Veterinär <u>u</u> ntersuchungsamt Cuxhaven		NSIS	National Swedis Protection Bo <u>N</u> aturvårdsverke <u>L</u> aboratory Box 1302 S-171 25 Solna <u>S</u> WEDEN
POLAND	IWMħ	Schleusenstraße D-2190 <u>C</u> uxhaven FEDERAL REPUBLIC OF <u>G</u> ERMANY <u>I</u> nstitute of <u>M</u> eteorology and		NWLS	National Swedis Protection B <u>N</u> aturvårdsverke Laboratory S-75008 Uppsala <u>S</u> WEDEN
		Water Management Wazingtona 42 81-342 Gdynia POLAND		LCRS	Swedish Environ Laboratory for S-170 11 Drottn <u>S</u> WEDEN
	VHRP	<u>V</u> eterinary <u>H</u> ygiene <u>R</u> esearch Station Gdansk <u>P</u> OLAND		SERI	<u>Swedish</u> Environ Institute
	SFIP	<u>S</u> ea <u>F</u> isheries <u>I</u> nstitute Aleja Zjednoczenia 1 81-345 Gdynia <u>P</u> OLAND			Sten Sturegatan Box 5207 S-402 24 Gothen SWEDEN
	IIAP	<u>I</u> nstitute of <u>I</u> chthyology <u>A</u> griculture Academy Szczecin <u>P</u> OLAND		IAMK	<u>I</u> nstitutionen f <u>m</u> arin <u>k</u> emi Chalmers teknis S-412 96 Gothen SWEDEN
SWEDEN	HRFS	Institute of <u>H</u> ydrographic <u>R</u> esearch National Board of <u>F</u> isheries Box 2566 403 17 Göteborg SWEDEN		SLKS	AB <u>S</u> vensk <u>L</u> abor Box 903 S-391 29 <u>K</u> almar <u>S</u> WEDEN
	UCKS	<u>U</u> niversity <u>C</u> ollege of <u>K</u> almar Inst. Natural Sciences and Technology Box 905 S~391 29 Kalmar <u>S</u> WEDEN	USSR	DBST	<u>D</u> epartment of t Academy of Scie Paldiski Street 200031 <u>T</u> allinn USSR
	MNHS	<u>M</u> iljögiftsövervakning PMK <u>N</u> atur <u>h</u> istoriska riksmuseet Box 50007 S-104 05 Stockholm <u>S</u> WEDEN		ASLR	<u>A</u> cademy of <u>S</u> cie Institute of Bi <u>R</u> iga 229021 USSR

sh Environment oard ets <u>Special Analytical</u>

sh Environment Board ets <u>W</u>ater Quality

nment Protection Board <u>C</u>oastal <u>R</u>esearch ningholm

nmental <u>R</u>esearch

42

nburg

för <u>a</u>nalytisk och

ska högskola nburg

ratoriet (SWELAB)

the <u>B</u>altic <u>S</u>ea ences t 1

ences of <u>L</u>atvian SSR iology

CODE LIST FOR INTERCALIBRATION EXERCISES ON CONTAMINANTS

in Sea Water - 1976

CODE

4A

4B

4C

4D

for contaminants in sea water

ANNEX 2

IOC COUNTRY CODES FOR BMP MEMBER COUNTRIES

COUNTRY	<u>CODE</u>
Denmark	26
Finland	34
German Democratic Republic	96
Germany, Federal Republic of	06
Poland	67
Sweden	77
Union of Soviet Socialist Republics	90

CODE	
26	
34	
96	
06	
67	•
77	
90	

4E	ICES/JMG/1/HG/SW - ICES, for Mercury in Sea Water
4F	ICES/JMG/1/CD/SW - ICES/ for cadmium in Sea Water
4G	5/TM/SW(3) - ICES Fifth Metals in Sea Water - Se Ni, Zn, Pb, Fe and Mn -
4H	5/TM/SW(4) - ICES Fifth Metals in Sea Water - Se 1983
41	JMG Intercalibration on - 1986
42	Other Intercomparison/In Metals in Sea Water - De
	-0-0-0-0-
5A	JMG Intercalibration on 1981

52	Other	Intercompa	aris	son/l
	Organo	ochlorines	in	Sea

-0-0-0-0-

6A in Sea Water - 1981

-46-

-47-

Reporting format for contaminants in sea water

ANNEX 3

IN SEA WATER

INTERCALIBRATION EXERCISE

- 1/TM/SW ICES First Round Intercalibration for Trace Metal Standard Solutions - 1976
- 2/TM/SW ICES Second Round Intercalibration for Mercury
- 3/TM/SW ICES Third Round Intercalibration for Trace Metals in Sea Water - 1977
- 4/TM/SW ICES Fourth Round Intercalibration for Trace Metals in Sea Water - 1978
- ICES/JMG/1/HG/SW ICES/JMG Intercalibration Exercise er - 1979
 - JMG Intercalibration Exercise er - 1979
 - Round Intercalibration for Trace Section 3 - Analyses for Cd, Cu, 1982/83
 - Round Intercalibration for Trace Section 4 - Analysis of mercury -
 - Trace Metals in Estuarine Waters

intercalibration Exercise on Trace escribe in comments.

Analyses of PCBs in Sea Water -

Intercalibration Exercise on Water - Describe in comments.

Kiel Intercalibration Workshop on Petroleum Hydrocarbons

Reporting format for contaminants in sea water

ANNEX 4

PARAMETER CODES FOR SALINITY/CHLOROSITY

Previously salinity/chlorosity data have been reported in association with a method code which implied whether the value was a chlorosity or salinity determination.

As a consequence of the use of parameters for reporting data a new system has been instituted for the coding of the parameter associated with salinity/chlorosity measurements. In this new system the first four characters of the parameter code define whether the data reported is a salinity value (PSAL) or a chlorosity value (CHLR): The method code information is incorporated in the parameter code as its last character according to the following list:

<u>Method</u>

- (a) Measurement from water sample (temperature measurement by thermometer assumed) 1 Titration by routine Mohr-Knudsen method CHLRA CHLRB 2 Titration by special precision method PSALA 3 Conductivity measurement by Laboratory salinometer PSALB 4 Refractive Index/direct density measurement (b) Measurement in situ (temperature measurement by thermistor assumed) 5 Conductivity/salinity measurement from CTD/STD PSALC vielding precision in salinity (0.01×10^{-3}) . 6 Conductivity/salinity measurement from CTD/STD PSALD with precision in salinity $>0.01 \times 10^{-3}$. 7 Conductivity/salinity measurement from CTD/STD PSALE calibrated with at least one in situ sample yielding precision in salinity (0.01×10^{-3}) . PSALF 8 Conductivity/salinity measurement from CTD/STD calibrated with at least one <u>in situ</u> sample yielding precision in salinity $>0.01 \times 10^{-3}$.
 - 9 Conductivity/salinity measurement using instrument, yielding precision in salinity $>0.5 \times 10^{-3}$ (e.g., Switchgear Bridge).

PSALG

Reporting format for contaminants in sea water

CODE LIST FOR PARAMETERS/CONTAMINANTS

PARAMETER/	CONTAMINANT	METHODS FORM	CONTAMINANT	
NAME	CODE	UNITS	REQUIRED	DATA FORM FIELD
_				
Depth 2	DEPH	0 C	no	7
Temperature ²	TEMP	C	no	7
]	PSALA]		no	7
	PSALB		no	7
	PSALC	practical	no	7
Salinity/	PSALD	salinity	no	7
Chlorosity .	PSALE	unit	no	7
10 T	PSALF		no	7
(see Annex 4	PSALG J		no	7
for codes)	CHLRA 7	g/kg	no	7
Ĺ	CHLRB J	3123	no	7
Suspended Solids	SUSP	mg/l	optional	7
Mercury	HG	µg/l	yes	7 and/or 10
Cadmium	CD	µg/l	yes	7 and/or 10
Copper	CU	µg/l	yes	7 and/or 10
Zinc	ZN	µg/l	yes	7 and/or 10
Lead	PB	µg/l	yes	7 and/or 10
Nickel	NI	µg/l	yes	7 and/or 10
Chromium	CR	µg/l	yes	7 and/or 10
Iron	FE	µg/l	yes	7 and/or 10
Manganese	MN	µg/l	yes	7 and/or 10
Cobalt	CO	µg/l	yes	7 and/or 10
Arsenic	AS	µg/l	yes	7 and/or 10
Antimony	SB	µg/l	yes	7 and/or 10
Tin	SN	µg/l	yes	7 and/or 10
Lindane (Y-HCH)	HCHG	ng/l	yes	7 and/or 10
Polychlorinated biphenyls	PCB	ng/l	yes	7 and/or 10
Petroleum hydro- carbons (total)	SPHC	µg/l	yes	7 and/or 10

¹ - Report the parameter value on the Contaminant Data Form in the field indicated

 2 - In the case of a negative temperature, insert a '-' sign in the faraleft column of the field (item 7).

-48-

-49-

ANNEX 5

Page ____ of ____ pages

INTERIM REPORTING FORMAT FOR CONTAMINANTS IN SEA WATER VERSION 2 (DRAFT 2)

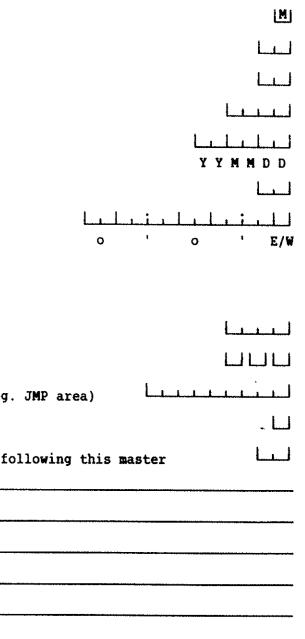
SEA WATER SAMPLING AND ANALYTICAL METHODS FORM

1.	Form identifier code	A
2.	Country	ليبيا
3.	Year	لــا
4.	Reporting Laboratory	
5.	Analytical Laboratory	
6.	Parameter/Contaminant code	
7.	Method identifier	LJ
8.	Method of sampling - bottle type/deployment	
9.	Method of pretreatment - separation of suspended solids/other	
10.	Method of preservation	
11.	Method of analysis of parameter/contaminant	
12.	Limit of detection of parameter/contaminant	Lill
13.	Intercalibration exercise	لــــا
14.	Comments	<u></u>

Page ____ of ____ pages

PAR	T I
1.	Form identifier code
2.	Country
3.	Ship code
4.	Sequence number (Station)
5.	Sampling date
6.	Sampling time
7.	Sampling area coordinates
PAR	F II

8.	Reporting	Laboratory
8.	Reporting	Laboratory


9. Organization

.

- 10. Sampling area designation (eg. JMP area)
- 11. Purpose of monitoring
- 12. Number of sample data forms following this master
- 13. Comments -----

INTERIM REPORTING FORMAT FOR CONTAMINANTS IN SEA WATER VERSION 2 (DRAFT 2)

SEA WATER CONTAMINANT MASTER

Page ____

INTERIM REPORTING FORMAT FOR CONTAMINANTS IN SEA WATER VERSION 2 (DRAFT 2)

SEA WATER CONTAMINANT DATA FORM

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 2. 3.	Year Sequence Form ide	e/Sta entif	tion n ier co	umber ode				
		4	5	6	7	8	9	10	11

4. Parameter/contaminant code

5. Method identifier (before filtration)

6. Oualifier

- 7. Parameter/contaminant value (if appropriate report value before filtration)
- 8. Method identifier (after filtration)

9. Oualifier

- 10. Parameter/contaminant value after filtration
- 11. Analytical Laboratory
- 12. Comments ----

(ICES, revised version May 1986)

This document should be read in parallel with *INTERIM REPORTING FORMAT FOR CONTAMINANTS IN SEA WATER*, published by ICES (May 1986 revised version). This Format is described in three versions: the full ICES version, the JMP version and the HELCOM version, the latter two are essentially subsets of the first with reference to the particular requirements of the JMP and HELCOM. The magnetic tape format (described below) can be used in conjunction with either of the three versions, where reference is made to specific sections of the full ICES version an equivalent section appears in the JMP and HELCOM subsets.

Magnetic tapes sent to ICES should be:

9 tracks, odd parity 800, 1600 or 6250 bpi (1600 bpi is strongly preferred) EBCDIC OR ASCII no label fixed blocked records logical record length 80 characters blocksize, a suitable multiple of 80

The exchange-format consists of the following record types:

04 - Sea Water Sampling and Analytical Methods Record

- 01 Sea Water Master Record
- 10 Sea Water Parameter/Contaminant Data Record

13 - Plain Language Record

An entire series of data obtained on one from one station/area on one sampling occasion should be organized as follows:

04-Sampling and Analytical Methods Record 13-Plain Language Records (optional, max 5)

.

.

04-Sampling and Analytical Methods Record 13-Plain Language Records (optional, max 5) 01-Master Record

13-Plain Language Records (optional, max 5) 10-Parameter/Contaminant Record

10-Parameter/Contaminant Record 01-Master Record (next series)

<u>Record layout</u>	for the	different	record	types:
----------------------	---------	-----------	--------	--------

Sea Wa *****

Record layout for	the diffe	erent record types:	<u>.</u>		Method of pre- treatment -separation of	23-23	0-9, A-Z or
Sea Water Sampling	g and Anal ********	ytical Methods Rec	cord:	:	suspended solids		,
					-other	24-24	0-9, A-2 or
Field name	Columns	Valid values					
Record id	1-2	04	Mandatory.		Method of preser- vation	25-25	0-9, A-Z or
Country	3-4	See Annex 2	Mandatory.All Annexes refer to "Interim Reporting Format".		Method of analysis	5 26-28	
Year	5-6		Mandatory. Insert the last two digits of the year in which samples were taken.				
,			-		Limit of detection	n 29-34	
Reporting Lab- oratory	7-10	See Annex 1	Mandatory. Insert the code for the laboratory responsible for reporting the data.		: •	· ` ;	
Analytical Lab- oratory	11-14	See Annex 1	Mandatory. Insert the code for the laboratory responsible for carrying out the analyses the details of which are located in columns.				
Parameter/Contam- inant code	15-19	See Annex 5	Mandatory, left justified, space filled. Insert the code for the parameter for which the methods details in columns to apply.		I/C (Inter- calibration)	35-36	See Annex
Method Identifier	20-20		Insert the identifier for the series of methods described (see page 6 of the "Interim Reporting Format"). The identifier must be unique for each of the Sampling and Analytical Methods records supplied within the series for a single parameter by a particular Analytical Labor- atory in any one year.		Filler	37-80	Spaces
Method of sampling -bottle type -deployment	g 21-21 22-22	0-9, A-Z	Mandatory. Mandatory. Each laboratory should maintain detailed records of the methods used and should assign a code for each of these methods.			į	

- or space Space filled if solids not separated, otherwise same comment as above.
- or space Space filled if no other pretreatment used otherwise same comment as above.
- or space Space filled if sample not preserved otherwise same comment as above.

Mandatory, left justified, space filled (code is alphanumeric). See page 6 of "Interim Reporting Format...*.

Mandatory, right justified, zero. filled. Insert the limit of detection as defined on page 7 of "Interim Reporting Format" in the appropriate units (see Annex 5) to 4 implied decimals. NOTE: Both this record and the Contaminant Data Record contain numeric data fields with implied decimals. For these fields "zero filled* means both leading and trailing zeroes.

3 Mandatory.

For future use.

-57-

Sea Water Contar ***************				Reporting lab- oratory code	32-35	See Annex 1
Field name	Columns	Valid values	Comments	Organization code	36-36	0 or 1
		* = = = = = = = = = = = = = = = = = = =	222222002222222222222222222222222222222		37-37	0 or 1
Record id	1-2	01	Mandatory.			
Sampling country	3-4	See Annex 2	Mandatory.		38-38	0 or 1
Ship code	5~6		Space filled if ship code missing. Code according to ICES Ship Code List.			
Sequence number (Station)	7-10	0001-9999	Mandatory, right justified, zero filled. Consecutive numbers for one year, starting with 0001 for the first Master Form in a year, 0002 for the second, etc. <u>or</u> Station number as described in "Interim Reporting Format"	Sampling area indicator	39-39	I,J,B or spac
Sampling date	11-16		Mandatory. In the form YYMMDD, if day not reported then DD=00.			
Sampling time	17-18	00-24	Space filled if not given other- wise, right justified zero filled insert time at which sampling commenced to the near- est hour.	Sampling area designation	40-48	
Sampling area coordinates	19-31		Space filled if not given other- wise (see Interim Reporting Format page 8):			
	19-20 21-22 23-2 4	36-73 00-59	Latitude degrees (a) Latitude minutes (a) Latitude decimal fraction of minutes (b)			
	25-26 27-28 29-30	42-00 and 00-13 00-59	Longitude degrees (a) Longitude minutes (a) Longitude decimal fraction of minutes (b)	Purpose	49-49	0-4
			 a) mandatory, right justified, zero filled. b) optional, left justified, space filled. NB. decimal fraction <u>not</u> seconds. 	Number of Cont- aminant Data records follow- ing this Master record	50-51	01-99
	31-31	E or W	Quadrant, mandatory	Filler	52-80,	Spaces
	71-21		Kagaronol managoorl		2	
				•		ì

-56-

Mandatory.

Mandatory. If data submitted for ICES insert 1, otherwise 0.

Mandatory. If data submitted for JMP insert 1, otherwise 0.

Mandatory. If data submitted for BMP insert 1, otherwise 0.

NOTE: At least one of the columns 36-38 must contain a '1'. Data can be submitted for more than one organization.

or space

;

If data submitted for JMP (ie. 1 in column 37) then mandatory, insert J. Otherwise optional, insert I,J or B according to the sampling area designation in columns 40-48. Space filled if no sampling area designation given.

If data submitted for JMP (ie. 1 in column 37) then mandatory: Left justified, space filled, insert number of JMP area sampled. If appropriate, insert a sub-area or station number, leaving one blank after the area number.

If data not submitted for JMP then optional - allowed sampling area systems are ICES statistical rectangles, JMP areas and station numbers and BMP stations.

Mandatory.

Mandatory, right justified, zero filled.

For future use.

Sea Water Parameter/Contaminant Data Record:

ield name C			Comments
ecord id	1.2	10	Mandatory.
lecora la	1-2	10	Manualory.
nformation from master record	3-31		Mandatory, copy the information in columns 3-31 of the preceed- ing Master Record.
Parameter/Contam- .nant code	32-36	see Annex 5	Mandatory, left justified, space filled.
Method identifier	37-37		Space filled if not required, otherwise, insert the method
			identifier to link the data reported in columns 38-47 to one
			of the Sampling and Analytical Methods records for the
			parameter concerned.
Qualifier	38-38 39-39	space, A, S, Q, R	Insert the Qualifiers appropriate to the data reported in columns 40-47. See page 11 o
		or M	the "Interim Reporting Format
Parameter/Contam- inant value	40-47		Insert the parameter value in the units specified in Annex to four implied decimals. Wher
			appropriate (see Annex 5) thi value should be for th contaminant concentration in th sample before filtration. Spac filled if not given, otherwis
			right justified zero filled.
Method identifier	48-48		Space filled if not required otherwise, insert the metho identifier to link the dat reported in columns 49-58 to on
			of the Sampling and Analytica Methods records for th parameter concerned.
			1.000 000 0000
Qualifier	49-49 50-50	space,> or < space,A,S,Q,R or M	Insert the Qualifiers appropriate to the data reported i columns 51-58. See page 11 of the "Interim Reporting Format

Parameter/Contam- 51-58 inant value

5

Analytical lab- oratory code	59-62	see Annex 1
Filler	63-80	Spaces

arch Fee . t 1-3 Peter

1

1

-59-

Insert the parameter value in the units specified in Annex 5 to four implied decimals. Where appropriate (see Annex 5) this value should be for the contaminant concentration in the sample after filtration. Space filled if not given, otherwise right justified zero filled.

Mandatory.

For future use.

-60-

Plain Language Record:

Field name	Columns	Valid values	Comments
Record id	1-2	13	Mandatory.
Comments	3-62		Left justified, space filled.
Filler	63-80	Spaces	

1

BALTIC SEA ENVIRONMENT PROCEEDINGS

<pre>REPORT OF THE INTERIM MARINE ENVIRONMENT PRO (1981) ACTIVITIES OF THE COMM - Report on the activity ronment Protection C - HELCOM Recommendation (1981) BALTIC MARINE ENVIRONM (1981) ASSESSMENT OF THE EFFE RESOURCES OF THE BALTIC PART A-1: OVERALL CONC (1981)* ASSESSMENT OF THE EFFE RESOURCES OF THE BALTIC PART A-1: OVERALL CONC (1981)* ASSESSMENT OF THE EFFE RESOURCES OF THE BALTIC PART A-1: OVERALL CONC PART A-2: SUMMARY OF R PART B: SCIENTIFIC MAT (1981) WORKSHOP ON THE ANALYS Institut für Meeresku</pre>
 Report on the activity ronment Protection C HELCOM Recommendation (1981) BALTIC MARINE ENVIRONM (1981) ASSESSMENT OF THE EFFE RESOURCES OF THE BALTI PART A-1: OVERALL CONC (1981)* ASSESSMENT OF THE EFFE RESOURCES OF THE BALTI PART A-1: OVERALL CONC (1981)* ASSESSMENT OF THE EFFE RESOURCES OF THE BALTI PART A-1: OVERALL CONC PART A-2: SUMMARY OF R PART B: SCIENTIFIC MAT (1981) WORKSHOP ON THE ANALYS
<pre>(1981) ASSESSMENT OF THE EFFE RESOURCES OF THE BALTIO PART A-1: OVERALL CONC: (1981)* ASSESSMENT OF THE EFFE RESOURCES OF THE BALTIO PART A-1: OVERALL CONC: PART A-2: SUMMARY OF R: PART B: SCIENTIFIC MAT: (1981) WORKSHOP ON THE ANALYS</pre>
ASSESSMENT OF THE EFFE RESOURCES OF THE BALTI PART A-1: OVERALL CONC (1981)* ASSESSMENT OF THE EFFE RESOURCES OF THE BALTI PART A-1: OVERALL CONC PART A-2: SUMMARY OF R PART B: SCIENTIFIC MAT (1981) WORKSHOP ON THE ANALYS
RESOURCES OF THE BALTI PART A-1: OVERALL CONC PART A-2: SUMMARY OF R PART B: SCIENTIFIC MAT (1981) WORKSHOP ON THE ANALYS
Department of Marine 1981 (1982)
ACTIVITIES OF THE COMM - Report of the activi- ronment Protection C the Third Meeting of 16-19 February 1982 - HELCOM Recommendation
(1982)
ACTIVITIES OF THE COMM - Report of the activity ronment Protection C the Fourth Meeting Helsinki 1-3 February
- HELCOM Recommendation (1983)

HE BALTIC SEA STATES WITHIN THE ENTION ON THE PROTECTION OF THE THE BALTIC SEA AREA 1974-1978

COMMISSION (IC) TO THE BALTIC

ISSION 1980 ties of the Baltic Marine Envicommission during 1980 ons passed during 1980

ENT BIBLIOGRAPHY 1970-1979

ECTS OF POLLUTION ON THE NATURAL C SEA, 1980 LUSIONS

ECTS OF POLLUTION ON THE NATURAL C SEA, 1980 LUSIONS ESULTS PERIAL

SIS OF HYDROCARBONS IN SEAWATER unde an der Universität Kiel, Chemistry, March 23 - April 3,

ISSION 1981 ties of the Baltic Marine Envi-Commission during 1981 including the Commission held in Helsinki

ns passed during 1981 and 1982

ISSION 1982 ties of the Baltic Marine Envi-Commission during 1982 including of the Commission held in y 1983 ons passed during 1982 and 1983

- SECOND BIOLOGICAL INTERCALIBRATION WORKSHOP No. 9 Marine Pollution Laboratory and Marine Division of the National Agency of Environmental Protection, Denmark, August 17-20, 1982, Rønne, Denmark (1983)
- TEN YEARS AFTER THE SIGNING OF THE HELSINKI CONVENTION No. 10 National Statements by the Contracting Parties on the Achievements in Implementing the Goals of the Convention on the Protection of the Marine Environment of the Baltic Sea Area (1984)
- STUDIES ON SHIP CASUALTIES IN THE BALTIC SEA 1979-1981 No. 11 Helsinki University of Technology, Ship Hydrodynamics Laboratory, Otaniemi, Finland P. Tuovinen, V. Kostilainen and A. Hämäläinen (1984)
- No. 12 GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR THE SECOND STAGE (1984)
- ACTIVITIES OF THE COMMISSION 1983 No. 13 - Report of the activities of the Baltic Marine Environment Protection Commission during 1983 including the Fifth Meeting of the Commission held in Helsinki 13-16 March 1984 - HELCOM Recommendations passed during 1983 and 1984 (1984)
- SEMINAR ON REVIEW OF PROGRESS MADE IN WATER PROTECTION No. 14 MEASURES 17-21 October 1983, Espoo, Finland (1985)
- ACTIVITIES OF THE COMMISSION 1984 No. 15 - Report on the activities of the Baltic Marine Environment Protection Commission during 1984 including the Sixth Meeting of the Commission held in Helsinki 12-15 March 1985 - HELCOM Recommendations passed during 1984 and 1985 (1985)
- WATER BALANCE OF THE BALTIC SEA No. 16 A Regional Cooperation Project of the Baltic Sea States; International Summary Report (1986)
- NO. 17A FIRST PERIODIC ASSESSMENT OF THE STATE OF THE MARINE ENVIRONMENT OF THE BALTIC SEA AREA, 1980-1985; GENERAL CONCLUSIONS (1986)
- No. 17B FIRST PERIODIC ASSESSMENT OF THE STATE OF THE MARINE ENVIRONMENT OF THE BALTIC SEA AREA, 1980-1985; BACKGROUND DOCUMENT (1987)

No. 18 ACTIVITIES OF THE COMMISSION 1985 Helsinki 11-14 February 1986 - HELCOM Recommendations passed during 1986 (1986)*No. 19 BALTIC SEA MONITORING SYMPOSIUM Tallinn, USSR, 10-15 March 1986 (1986)No. 20 FIRST BALTIC SEA POLLUTION LOAD COMPILATION (1987)*No. 21 CONVENTION National Swedish Administration of Shipping Sweden (1987)No. 22 SEMINAR ON OIL POLLUTION QUESTIONS 19-20 November 1986, Norrköping, Sweden (1987)No. 23 ACTIVITIES OF THE COMMISSION 1986 Helsinki 24-27 February 1987 - HELCOM Recommendations passed during 1987 (1987)*No. 24 (1987)No. 25 7-9 September 1986, Visby, Sweden (1987)No. 26 ACTIVITIES OF THE COMMISSION 1987 15-19 February 1988 - HELCOM Recommendations passed during 1988 (1988)ž

1

4

* out of print

- Report on the activities of the Baltic Marine Environment Protection Commission during 1985 including the Seventh Meeting of the Commission held in SEMINAR ON REGULATIONS CONTAINED IN ANNEX II OF MARPOL 73/78 AND REGULATION 5 OF ANNEX IV OF THE HELSINKI and Navigation; 17-18 November 1986, Norrköping, - Report on the activities of the Baltic Marine Environment Protection Commission during 1986 including the Eighth Meeting of the Commission held in . PROGRESS REPORTS ON CADMIUM, MERCURY, COPPER AND ZINC SEMINAR ON WASTEWATER TREATMENT IN URBAN AREAS - Report on the activities of the Baltic Marine Environment Protection Commission during 1987 including the Ninth Meeting of the Commission held in Helsinki

Baltic Marine Environment Protection Commission — Helsinki Commission —

į

;

.

- 2

.

Mannerheimintie 12 A SF-00100 Helsinki

ISSN 0357-2994

Helsinki 1988. Government Printing Centre